FACOLTÀ DI INGEGNERIA

Corso di laurea in Ingegneria per l’ Ambiente e il Territorio
Tesi di laurea in Tecnica delle Costruzioni

“L’ evoluzione delle caratteristiche meccaniche degli acciai da c.a. dal Dopoguerra ad oggi”

Relatore: Prof. Ing. Gerardo Mario Verderame
Candidata: Anna Maria Longobardi
Matr. 518/683

Correlatori:
Ing. Marilena Esposito
Ing. Paolo Ricci

Anno accademico 2010/2011
L’ evoluzione delle caratteristiche meccaniche degli acciai da c.a.
dal Dopoguerra ad oggi.

La valutazione dell’esistente, ovvero il danno che una struttura, e ciò che essa contiene, può subire in seguito ad un dato evento sismico parte dalla conoscenza non solo del sistema strutturale ma anche degli elementi geometrici e meccanici che lo compongono e che ne influenzano significativamente il comportamento. Aspetto non di certo trascurabile è, quindi la necessità di dover conoscere i materiali, ed in particolare le caratteristiche meccaniche, con cui il sistema strutturale è realizzato. Informazioni queste, quasi mai deducibili, a meno dell’esecuzione di una vasta campagna d’indagine, che difficilmente la committenza è disposta ad eseguire.

Dal momento che la maggior parte del patrimonio edilizio italiano, distrutto dalla Seconda Guerra Mondiale, è stato ricostruito negli anni successivi, si è pensato di concentrare l’attenzione sul cinquantennio 1950-2000. In particolare, poiché gran parte dell’edificato italiano è in cemento armato, tale studio è rivolto all’analì ed alla caratterizzazione degli acciai impiegati nelle strutture in c.a.

In linea di massima, nei primi decenni data ‘l’urgenza del ricostruire’ l’acciaio utilizzato per la realizzazione dei strutture in c.a. presentava caratteristiche meccaniche non ottimali. Negli anni di boom edilizio (’70), per le realizzazioni degli edifici erano adoperate nel calcestruzzo, barre lisce che scambiavano tensioni di aderenza con il calcestruzzo circostante piuttosto ridotte, per tale motivo e per avere sezioni di calcestruzzo minori e un migliore scambio di tensioni; dagli anni ’70 in poi, le barre lisce furono progressivamente sostituite da quelle ad aderenza migliorata. Tale introduzione fu ovviamente di fondamentale importanza, in quanto non solo ci si avvicina all’ipotesi di ‘perfetta aderenza’, ma soprattutto, grazie al
miglioramento dell’industria siderurgica e chimica, nonché dei notevoli passi in avanti fatti dalla ricerca, nasce anche il concetto di ‘dutilità dei materiali’.

Tale situazione di continua evoluzione, se da un lato non può che avere una connotazione positiva legata al progressivo miglioramento, dall’altro evidenzia i problemi che attualmente si trova ad affrontare il progettista che in un panorama così variegato si appresta ad eseguire una valutazione/miglioramento sismico di una struttura.

Di fatto, la conoscenza dei materiali impiegati, parte dallo studio dei progetti originali, ed in particolare dei certificati di prova dell’epoca, non sempre però ‘disponibili’. Successivamente, od ad integrazione di essi, in casi fortunati, si progetta una campagna d’irdagine, che la committenza non sempre è disposta a finanziare.

Nel presente lavoro di tesi si affronta il problema della caratterizzazione statistica delle proprietà meccaniche degli acciai da armatura, utilizzati per la realizzazione di strutture in c.a. al fine di offrire ai progettisti la possibilità di risalire ai valori medi ‘più probabili’ dei parametri meccanici che caratterizzano gli acciai da c.a. noto che sia il periodo di realizzazione dell’opera, ovvero il periodo e la categoria di appartenenza dell’ acciaio.

Data, la numerosità di pratiche a disposizione, ci si è concentrati soli sugli anni pari e solo su alcuni mesi, quelli maggiormente rappresentativi dell’anno in analisi, cercando di digitalizzare almeno 600 prove per anno. Tale numerosità, nel tempo è andata via via scemando, molto probabilmente a causa della nascita di laboratori di prova privati a cui la normativa consentì la possibilità di effettuare le prove sui materiali e forrire una valida certificazione.

E’ stato quindi realizzato un database di 19’140 prove, relative a 2’350 pratiche, su barre di acciaio, di cui 10’448 relative a barre lisce e8’692 relative a barre nervate.
I parametri meccanici fondamentali deducibili dalle schede sono:

- tensione di snervamento,
- tensione di rottura,
- allungamento percentuale a rottura,
- rapporto di incrudimento.

L’analisi si è articolata in due fasi:

Studio preliminare: Il campione è stato controllato, classificato non solo in termini tipologici Lisci/Nervati ma anche in termini di categoria, facendo riferimento alla classificazione dell’epoca. Successivamente sono state valutate le caratteristiche del campione relativamente alla committenza, la classificazione commerciale degli acciai, se dichiarata o meno, e i diametri maggiormente utilizzati nell’arco di tempo di riferimento.

Per quanto concerne la categoria di acciaio, si evidenzia che coerentemente ai dettami normativi dell’epoca si è usata la seguente classificazione:

Acciai lisci: Comune, Aq42, Aq50, Aq60 e A. L. E. (1950 – 1974)

FeB 22-, FeB 22k, FeB 32k (dal 1974 al 1996)

Acciai nervati: FeB 38-, FeB 38k, FeB 44k.

Si evidenzia l’introduzione di categorie ‘fuori norma’ ovvero non normative ma dedotte da considerazioni riguardanti i valori dei parametri meccanici. In particolare si tratta di campioni “penalizzati” per almeno un parametro non rispondente a quando previsto dalla normativa.

Infine sono stati valutati i parametri medi delle quattro principali caratteristiche meccaniche di interesse per le diverse categorie oppure indipendentemente dalla conoscenza di esse, noto solamente l’anno o il decennio di realizzazione della struttura.

Studio Statistico: Sono state valutate le distribuzioni di frequenza empiriche e le distribuzioni Normali e log-Normali che meglio approssimano quella reale, dei principali parametri meccanici, a monte di differenti livelli di conoscenza:

1. Conoscenza del solo intervallo temporale di realizzazione dell’opera
2. Conoscenza dell’anno di realizzazione dell’opera
3. Conoscenza dell’intervallo temporale e della categoria di acciaio
4- Conoscenza dell’anno e della categoria di acciaio

E’ però, da sottolineare che la classificazione eseguita potrebbe non coincidere con la categoria commerciale con cui gli acciai sono stati venduti, essendo tale informazione non sempre presente nelle pratiche, ed avendo eseguito una classificazione postuma, a valle dell’esecuzione della prova.

Nella parte finale del lavoro è stato poi introdotto l’ utilizzo di un programma di selezione degli acciai che sulla base del database digitalizzato, nota o meno la tipologia di acciaio (liscio o nervato), noto l’anno o il periodo di realizzazione della struttura, nota o meno la classe di acciaio, riporta oltre alle principali grandezze meccaniche medie (valori utili in fase di valutazione preliminare) le distribuzioni di frequenza empirica e le corrispondenti distribuzioni Normali e Log – Normali con i valori dei parametri che le caratterizzano (informazioni utili in caso di analisi di vulnerabilità su larga scala).

È stato in sintesi realizzato un database che consente agevolmente di determinare i valori dei parametri meccanici di maggior interesse delle barre di armatura utilizzate per la realizzazione degli edifici in c. a. nell’ Italia Meridionale grazie alla caratterizzazione fatta del campione rinvenuto dagli archivi della Facoltà di Ingegneria. Ciò al fine di fornire al progettista uno strumento per poter agevolmente valutare le proprietà meccaniche dell’acciaio nell’ ottica di poter agevolmente effettuare una prima valutazione della vulnerabilità sismica di un dato edificio.

Lo studi ha evidenziato che:

- Le prove rinvenute nell’ archivio della Facoltà di Ingegneria di Napoli dal 1950 al 2000 sono 19’960 di cui 19’140 sono effettivamente utili all’ analisi effettuata nel presente lavoro di tesi poiché le restanti 820 sono caratterizzate dall’ assenza di almeno uno dei parametri meccanici di interesse, generalmente la tensione di snervamento.

- La committenza degli edifici dai quali sono state estratte le barre di armatura sono, a parità di percentuali, pubblici e privati, quindi rappresentano un campione abbastanza rappresentativo della realtà.
Nel trentennio dal 1950 al 1988 le principali tipologie di barre utilizzate per la realizzazione degli edifici in c.a. erano quelle lisce, ma sono state caratterizzate da una progressiva diminuzione fino a raggiungere un valore percentuale di utilizzo praticamente nulla negli anni ’90 caratterizzati invece da un notevole incremento delle barre ad aderenza migliorata, che attualmente sono le uniche che la normativa attualmente vigente, la N.T.C.’08, consente di utilizzare.

L’utilizzo maggiore degli acciai lischi dal 1950 al 1972 è stato del 53% per gli Aq50, dal 1974 al 1996 del 36% degli FeB22k e infine per quanto riguarda gli acciai ad aderenza migliorata è stato del 92%, negli ultimi anni del ’90, dell’ FeB44k.

I diametri più utilizzati nel corso del cinquantennio, in generale, sono stati i Φ 12, 14 e 16 mm, per i Φ = 6 e 8 mm è stata invece un utilizzo piuttosto costante, soprattutto per i Φ = 8 mm perché sono utilizzate per la realizzazione di armature trasversali.

L’analisi statistica relativamente agli acciai lischi è stata condotta essenzialmente nel trentennio 1950-1980, entro in quale il campione è stato riconosciuto significativo. Lo studio ha evidenziato per la tensione di snervamento e per la tensione di rottura valori medi attesi e coefficienti di variazioni relativamente contenuti, mentre per l’allungamento a rottura e per il rapporto d’incrudimento i coefficienti di variazione appaiono maggiori di quelli attesi, a causa soprattutto dello scarso interesse normativo dell’epoca verso tale parametro.

Il cambio di classificazione normativo del 1972, circolare cardine che getta le basi per quello che diventerà il calcolo agli stati limite, passando da un sistema di tipo deterministico a quello statistico attraverso l’introduzione del “valore caratteristico”, mostra come di fatto gli acciai FeB32 e FeB22 di fatto sostituiscono i precedenti AQ42 ed AQ60.

Dall’analisi delle distribuzioni per gli acciai lischi in relazione alla tensione di snervamento, dalle distribuzioni Normale e Log – Normale emerge che all’aumentare
della classe di resistenza, diminuisce la probabilità di accadimento di trovare il valore atteso poiché le curve tendono a schiacciarsi e a ricoprire aree abbastanza ampie. Il rapporto di incrudimento aumenta notevolmente, la percentuale di allungamento a rottura diminuisce e quindi si verifica un notevole incremento della duttilità al migliorare delle caratteristiche meccaniche.

L’analisi statistica relativamente agli acciai ad aderenza migliorata è stata condotta essenzialmente dal 1954 al 2000, entro in quale il campione è stato riconosciuto significativo. I valori di tensione di snervamento e di rottura appaiono, molto variabili nei primi decenni del cinquantennio a causa della ridotta numerosità delle prove, appaiono più stabili nell’ultimo trentennio, infatti le distribuzioni di frequenza relative per entrambi i parametri si presentano più raccolte intorno al valore medio, ovvero aumenta la probabilità di trovare il valore atteso. Lo stesso discorso si ripeta anche per il rapporto di incrudimento il quale presenta generalmente una deviazione standard piccola a differenza dell’ allungamento a rottura che invece mostra una dispersione piuttosto elevata intorno al valore medio.

Tale studio può senza alcun dubbio prevedere ulteriori sviluppi, legati inizialmente ad un incremento della popolazione almeno su base spaziale, ovvero incrementando il campione soprattutto nell’ultimo ventennio, dove la nascita dei laboratori di prove private ha ridotto la numerosità delle prove eseguite dalla Facoltà di Ingegneria.

Il presente lavoro è comunque riuscito a fornire indicazioni di notevole interesse e i risultati a cui si è giunti, possono essere utili al progettista per approcciare lo studio caratteristiche dell’acciaio di armatura utilizzato per la realizzazione del c.a.