Reflui di un’industria conserviera: metodi di trattamento a confronto

RELATORE
Prof. G. Rotondo

CANDIDATO
Francesco Caiaiello
matr. 518/528

ANNO ACCADEMICO 2009/2010
INDICE

1. PREMESSA 2
2. INDUSTRIA CONSERVIERA 3
3. TRATTAMENTI SECONDARI ATTUABILI 5
4. SCELTA DEL TRATTAMENTO E IMPIANTO DEFINITIVO 7
5. CONCLUSIONI 10
1. PREMESSA

Le attività sociali, sia civili che produttive utilizzano una grande quantità di acqua con conseguente produzione di scarichi, fonte di inquinamento, col quale si intende un impatto sulla matrice acqua tale da modificarne le naturali caratteristiche per poi condizionarne la fruibilità.

I reflui industriali sono contraddistinti da valori molto elevati delle sostanze inquinanti e possono disturbare la normale capacità auto-depurativa del corpo recettore causando uno squilibrio dell’ecosistema.

Da qui la necessità di depurare le acque reflue attraverso un impianto di depurazione, che nel caso specifico può essere privato (di proprietà dell’azienda) o pubblico (impianto dove si inviano le acque residenziali).

Determinata la scelta si completa definitivamente l’intero processo depurativo comprendente la linea liquami e la linea fanghi.
2. INDUSTRIA CONSERVIERA

Il ramo conserviero si prefigge lo scopo di preservare nel tempo l'edibilità e il valore nutritivo di un prodotto agroalimentare, prevenendone le alterazioni fisico-chimiche oppure biologiche. Il pericolo più imponente è il batterio Clostridium botulinum a causa della tossina che riesce a liberare, qualora ritorni alla condizione favorevole di anaerobiosi, grazie alla germinazione della spora in cui si racchiude. Per evitare di andare in contro ad un ambiente ad esso favorevole si agisce sul pH, o si attua un processo termico (121°C per 2 minuti e 30 secondi capace di eliminare tossine e spore).

Si prende in esame un’industria conserviera che produce una gamma di prodotti così costituita: dai pomodori si ricavano i pelati, la polpa, passati, ecc; dalla frutta si ottengono le confetture ed i succhi; ed infine dagli ortaggi i sottoli ed i sottaceti.

Tutta la materia prima che giunge in un’industria di questo tipo, subisce delle fasi di preparazione consistenti nel lavaggio, nello scarto di materiale non idoneo al proseguimento del processo, nella separazione per colore e dimensioni, nella fase di eliminazione di quelle parti che non devono essere presenti nel prodotto finale (buccia, nocciolo, ecc.), e nella triturazione, o nel taglio in base al risultato che si vuole ottenere.

Dopodiché il materiale è sottoposto ad un trattamento termico di scottatura, per quella materia prima che sarà protetta dai possibili cambiamenti dal liquido di riempimento; o di cottura, per la frutta trasformata in marmellata, vista l’assenza del suddetto liquido. Alla fine vi è il riempimento dei contenitori (in latta o vetro), i quali a loro volta subiscono un trattamento termico (pastorizzazione, appertizzazione, sterilizzazione).
I reflui di un’industria conserviera contengono una grande quantità di inerti (dal lavaggio e dal dilavamento dello stoccaggio esterno); di parti vegetali (dalla cernita, dai procedimenti termici e dalla mondatura, dal riempimento dei contenitori); di sostanze organiche, solidi sospesi, grassi ed oli (da alcune fasi del processo e dalla pulizia degli impianti); di detergenti (dalla pulizia dei locali); di sostanze velenose, quali cloruri, pesticidi fosforati e pesticidi totali (dalle acque meteoriche entrate in contatto con le trappole contro le infestazioni).
Si riportano in tabella i valori caratteristici di un refluo di un’industria conserviera:

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Unità di misura</th>
<th>Valori riscontrabili</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume specifico</td>
<td>$m^3_{aqua}/t_{vegetale}$</td>
<td>$2,5 \div 5,0$</td>
</tr>
<tr>
<td>Ph</td>
<td>- -</td>
<td>$4,5 \div 9,5$</td>
</tr>
<tr>
<td>Solidi Sospesi Totali</td>
<td>mg/L</td>
<td>$125 \div 1500$</td>
</tr>
<tr>
<td>COD</td>
<td>mg/L</td>
<td>$400 \div 2700$</td>
</tr>
<tr>
<td>BOD5</td>
<td>mg/L</td>
<td>$300 \div 2000$</td>
</tr>
<tr>
<td>N totale</td>
<td>mg/L</td>
<td>$10 \div 37,5$</td>
</tr>
<tr>
<td>N-NO$_3$</td>
<td>mg/L</td>
<td>$0 \div 12,5$</td>
</tr>
<tr>
<td>P totale</td>
<td>mg/L</td>
<td>$1,5 \div 25$</td>
</tr>
<tr>
<td>Pesticidi fosforati</td>
<td>mg/L</td>
<td>$0 \div 0,10$</td>
</tr>
<tr>
<td>Altri Pesticidi totali</td>
<td>mg/L</td>
<td>$0 \div 0,05$</td>
</tr>
<tr>
<td>Cloruri</td>
<td>mg/L</td>
<td>$10 \div 150$</td>
</tr>
</tbody>
</table>
3. TRATTAMENTI SECONDARI ATTUABILI

I processi secondari tra i quali scegliere sono la fitodepurazione, quello chimico-fisico, e quello biologico.

La fitodepurazione si compie attraverso le aree umide artificiali (i Constructed Wetlands), le quali sfruttano l’effetto depurativo dovuto all’assorbimento da parte delle radici delle piante (tra le quali si utilizzata la Phragmites Australis) e all’adsorbimento da parte del substrato (medium composto materiale inerte) delle sostanze inquinanti, nonché all’azione metabolica dei micrororganismi (attivata dall’ossigeno liberato dalle radici). I processi che avvengono sono biologici (fotosintesi, fermentazione, ecc); chimici (ossido-riduzione, adsorbimento dei metalli pesanti, ecc); e fisici (sedimentazione e filtrazione).

Questi sistemi possono essere a idrofite galleggianti; a idrofite radicate sommerse; e a macrofite radicate emergenti. Quest’ultimo sistema si classifica ulteriormente in base al flusso idraulico (superficiale o sommerso). Le vasche sono costituite da un fondo impermeabile, ricoperto da un medium, e da un sistema di tubazioni di ingresso e di uscita. Sono anticipate da una fase di sedimentazione per evitare l’intasamento del medium, ed inoltre sono disposte in più stadi.

Il trattamento biologico elimina le sostanze organiche dall’acqua, rendendo le sostanze organiche sedimentabili, simulando i processi autodepurativi di un corpo idrico, con una velocità e una resa di trasformazione maggiori. I micrororganismi interessati possono essere anaerobi, scelti se si vuol produrre energia alternativa (biogas), attraverso un percorso più lento richiedente minori dispendi energetici; oppure aerobi quando il depurare l’acqua è lo scopo principale. In entrambi i casi essi compiono due azioni: l’ossidazione delle sostanze, e la sintesi del materiale cellulare. Nei processi anaerobici si utilizzano le
vasche sette, o le vasche Imhoff; mentre in quelli aerobici si usano
vasche di ossidazione a colture adese (letti percolatori, biodischi), nelle
quali la pellicola biologica si forma, e cresce, su dei supporti e una volta
ingranditasi troppo si stacca; oppure a colture sospese (fanghi attivi), in
cui la pellicola nasce e sviluppa delle colonie interamente in sospensione
nel liquame.

Ultimo modello è quello chimico-fisico, consistente nell’ingrandimento
dei fiocchi, per lo più colloidali, rimasti a seguito della prima
sedimentazione, ad opera di sostanze chimiche immesse nel liquame.

Esso si sviluppa in tre fasi, che si sviluppano in un’unica vasca, nelle
quali i fiocchi si formano, si aggregano ed infine precipitano.
4. SCELTA DEL TRATTAMENTO E IMPIANTO DEFINITIVO

Per affrontare la scelta del miglior trattamento secondario si riportano pregi e difetti dei suddetti processi. La fitodepurazione comporta minori costi di costruzione e di esercizio (minore manutenzione, assenza di apparecchiature, personale non altamente qualificato); inoltre ha una maggiore resistenza agli shock di carico organico ed idraulico a causa dei lunghi tempi di ritenzione idraulica. Di contro richiede ampie superfici; ha un andamento stagionale delle prestazioni; produce odori molesti; ed è causa di proliferazione di zanzare e roditori.

Le colture adese comportano un basso consumo energetico; una minore manutenzione; una buona sedimentazione dei fanghi; una minore sensibilità alle variazioni di carico e agli agenti tossici rispetto ai fanghi attivi; e una resistenza alle basse temperature. Hanno come svantaggi delle rese minori; dei costi di investimento elevati; la presenza forzata della sedimentazione primaria, la quale deve evitare l’intasamento del supporto; elevati rischi di ostruzione; e se si deve avere l’eliminazione dell’azoto gli impianti sono troppo grandi.

I fanghi attivi annoverano tra gli svantaggi i costi di costruzione (grosse volumetrie) e di manutenzione (adeguata aerazione, preciso ricircolo del fango); un elevato consumo energetico; la necessità di personale qualificato e di sorveglianza regolare; una sensibilità al sovraccarico idraulico; una sedimentazione dei fanghi non sempre facile da gestire. I vantaggi di questo processo consistono nel buon livello di eliminazione di tutti i parametri di inquinamento, si ha infatti una rimozione del BOD₃ che oscilla dal 75% al 95%; si presta alla protezione degli ambienti
sensibili; rende fanghi leggermente stabilizzati; e ha una semplice eliminazione simultaneamente dei fosfati.

Il processo chimico-fisico, utilizzando reagenti chimici, comporta tra gli svantaggi quello degli elevati costi di gestione. Il rendimento è abbastanza elevato, il che è un beneficio, in quanto i reagenti che immettiamo riescono ed eliminare molte componenti dal liquame, fosforo e metalli pesanti, oltre che alla sostanza organica.

Tra questi sistemi si predilige l’utilizzo della depurazione biologica a fanghi attivi a medio carico, che ha i costi elevati di costruzione e di esercizio, ma di contro si ottengono degli ottimi rendimenti depurativi.

Per completare l’intero schema della linea liquame dobbiamo scegliere anche gli altri trattamenti. Si opta per una grigliatura fine, effettuata mediante tamburi rotanti o vagli vibranti; a seguito della quale troviamo un dissabbiatore aerato. Si passa poi ad una sedimentazione primaria tramite una vasca a flusso orizzontale. Invece dopo la fase di ossidazione la sedimentazione avviene in una vasca a flusso verticale, seguita dalla filtrazione e dalla disinfezione.

Determinati quindi i processi si riporta uno schema dell’intera linea acque:

SCHEMA DELLA LINEA LIQUAMI

- 1: industria;
- 2: pretrattamenti (grigliatura fine, dissabbiatore aerato, sedimentazione primaria);
- 3: vasca anossica di denitrificazione;
- 4: vasca di aerazione e nitrificazione;
- 5: sedimentazione secondaria;
- 6: filtrazione;
- 7: disinfezione;
- 8: corpo idrico recettore;
- 9: ricircolo miscela aerata nitrificata;
- 10: liquame e fango di ricircolo

Si associa una linea fanghi che si diparte da un pozzetto di raccolta del fango primario (con umidità del 97-98%) molto putrescibile; e di quello
secondario, costituito da fiocchi di microrganismi pieni d’acqua (umidità del 99%). Questa linea è costituita da una fase di ispessimento che riduce l’umidità dal 99% al 98% riducendo le portate e le volumetrie successive, ed avviene in una vasca simile a quella della sedimentazione dotata di un pettine che attua l’agitazione; da una fase di digestione, la quale scompone il contenuto organico putrescibile dei fanghi in sostanze più semplici. Si sceglie una digestione aerobica che permette il proseguito naturale dell’evoluzione delle colonie batteriche aerobiche, insufflando aria, ed inoltre permette un post-ispessimento interno alla vasca, grazie a delle pause temporizzate. Si prosegue con una fase di disidratazione artificiale, la quale, però, comporta un aumento dei costi, in quanto anticipata da condizionamento chimico-fisico (nella quale si utilizza calce) che ne aumenta l’efficienza. Si sceglie in particolare quella dei filtri pressa (con i rendimenti più alti, umidità finale del 60%), aventi una forma a fisarmonica e funzionante mediante un pistone che compattando la pressa fa fuoriuscire l’acqua. Un vantaggio è la possibilità di utilizzare stazioni di trattamento fanghi mobili, usate contemporaneamente da più impianti.

Infine si ha la fase di smaltimento del fango estratto, ormai palabile e stabile, nelle discariche.

Si riporta di seguito uno schema finale della linea fanghi:

![Schema della linea fanghi](image_url)

SCHEMA DELLA LINEA FANGHI

1: arrivo fanghi; 5: condizionamento;
2: pozzetto di raccolta; 6: disidratazione tramite filtri a pressa;
3: ispessimento; 7: smaltimento;
4: digestione aerobica; 8: acqua da ricircolare in testa all’impianto
5. CONCLUSIONI

In virtù delle valutazioni effettuate si giunge alla conclusione che per un’industria agro-alimentare, produttrice di tutte le tipologie di conserve, il migliore processo secondario del trattamento delle acque reflue sia quello biologico a fanghi attivi, in quanto permette di ottenere buoni rendimenti rispettando i limiti normativi. Di contro i costi si configurano abbastanza elevati a causa dei ricircoli di fango, del dispendio di energia e delle elevate volumetrie.

La scelta, dunque, viene effettuata, in primo luogo, a sfavore della fitodepurazione che, nonostante abbia costi meno elevati, comporta un elevato rischio per l’industria stessa in quanto conduttore di insetti e roditori; in secondo luogo a sfavore del trattamento chimico-fisico che, sebbene apporti rendimenti simili a quelli del processo a fanghi attivi, implica costi di gestione molto elevati basandosi sull’utilizzo dei reagenti chimici.