

Use of Advanced Oxidation Processes to Improve the Biodegradability of Landfill Leachates

Eric D. van Hullebusch (Associate Professor, UPE, France) and Mehmet A. Oturan (Full Professor, UPE, France)

Université Paris-Est, Laboratoire Géomatériaux et Environnement, EA 4508, 5 bd Descartes, 77454 Marne la Vallée Cedex 2, France.

* E-mail : Eric.vanHullebusch@univ-paris-est.fr

Content

- Context
- Landfill leachates characteristics
- Biological treatments
- Physicochemical treatments
- Advanced oxidation processes (AOP)
 - Presentation of AOP's
 - Why AOP's?
 - Electro-fenton treatment
 - Enhanced biodegradability
- Integrated advanced oxidation process and biological treatments
- Conclusions and futures perspectives

Landfill leachate entering retention ponds for treatment.

Context

- Leachates are defined as the aqueous effluent generated as a consequence of rainwater percolation through wastes, biochemical processes in waste's cells and the inherent water content of wastes themselves.
- Leachates may contain large amounts of organic matter (biodegradable, but also refractory to biodegradation), where humic-type constituents consist an important group, as well as ammonia-nitrogen, heavy metals, chlorinated organic and inorganic salts.

Context

- The removal of organic material based on
 - chemical oxygen demand (COD),
 - biological oxygen demand (BOD)
- and
 - ammonium
- => usual prerequisite before discharging the leachates into natural waters.
- Toxicity analysis carried out using various test organisms (Vibrio fisheri, Daphnia similes, Artemia salina, Brachydanio rerio ...) have confirmed the potential dangers of landfill leachates and the necessity to treat it so as to meet the standards for discharge in receiving waters.

Parameters	Young leachate	Stabilized leachate	_
Age	<5 years	>10 years	
Composition	Low molecular weight compounds such as VFAs (acetic acid, propionic acid and butyric acid)	High molecular weight compound such as humic acid and fulvic acid	8
pH	4.5-6.5	7.5–9.0	
$NH_3-N/mg L^{-1}$	500-2000	400–5000	
BOD/mg L^{-1}	4000-13 000	20–1000	
$COD/mg L^{-1}$	6000-60 000	5000-20 000	
BOD ₅ /COD	0.4-0.7	< 0.1 La	w effluent biodegradability
COD/TOC	>2.8	< 2.0	
Total (Kjehldal) nitrogen/g L ⁻¹	0.1–2	NA	
Heavy metals/mg L ⁻¹	>2	<2	From Kurniawan et al. (2010) J. Environ. Monit., 2010, 12, 2032-2047

Organic compound	CAS n°	Concentration in µg/l	Organic compound	CAS n°	Concentration in µg/l		
p-Cymene	99-87-6	199	Fluorene	86-73-7	0,926		
Toluene	108-88-3	71	Fluoranthene	206-44-0	0,742		
Ethylbenzene	100-41-4	30	1,3-Dichlorobenzene	541-73-1	0,7		
o-Xylene	95-47-6	21	Diethyl phthalate	84-66-2	0,7		
p-Dichlorobenzene	106-46-7	14	Acenaphthene	83-32-9	0,602		
Naphthalene	91-20-3	9	Pyrene	129-00-0	0,539		
Isopropylbenzene	98-82-8	8	p-tert-Octylphenol	140-66-9	0,512		
1,2,4-Trimethylbenzene	95-63-6	7	4-				
1,2-Dichlorobenzene	95-50-1	6	Nonylphenolmonoethox vlate	104-35-8	0,43		
1,3,5-Trimethylbenzene	108-67-8	3					
Styrene	100-42-5	3	Organic micro	pollutants	concentration		
Chlorobenzene	108-90-7	2	from the mixed	landfill lead	chates		
Dioctyl phthalate	117-84-0	2	solutions				
Tetrachloroethylene	127-18-4	2	From µg/l to no	g/L concer	tration range		
4-Nitrophenol	100-02-7	1,547					
Phenanthrene	85-01-8	1,464					
2-methylnaphthalene	91-57-6	1,359]				
1-Methylnaphthalene	90-12-0	0,948	- 6				

Organic compounds	CAS n°	Concentration in µg/l	Organic compounds	CAS n°	Concentration in µg/l		
4 Nonylphenol diethoxylate	20427-84-3	0,346	4-methyl- dibenzothiophene	7372-88-5	0,078		
2-Methylphenanthrene	2531-84-2	0,174	Dibutyl phthalate	84-74-2	0,07		
Anthracene	120-12-7	0,208	PCB 44	41464-39-5	0,062		
2-Methylphenanthrene	2531-84-2	0,174	PCB 118	31508-00-6	0,049		
diisobutyl phthalate	84-69-5	0,2	Heptachlor	76-44-8	0,048		
PCB 8	34883-43-7	0,172	1-methyl-	31317-07-4	0.043		
PCB 66	32598-10-0	0,168	dibenzothiophene	51517-07-4	0,045		
3-Methylphenanthrene	832-71-3	0,148	PCB 105	32598-14-4	0,041		
PCB-52	35693-99-3	0,146					
PCB 29	15862-07-4	0,14	O mente estemate				
Dibenzothiophene	132-65-0	0,13	mixed landfill lead	nates solutions	ntration from a		
PCB 18	37680-65-2	0,115					
Benz[a]anthracene	56-55-3	0,113					
1-Methylphenanthrene 832-69-9 0,101		Main compounds: Chlorinated compounds.					

0,092

PCB 101

37680-73-2

PAH, sulfur compounds, phenols and alkylated phenols, phthalate esters

• Municipal landfill leachates: A significant source for new and emerging pollutants ?

From Eggen et al., 2010, Science of the Total Environment, 408 (21) 5147-5157

- Municipal landfill leachates: A significant source for new and emerging pollutants ?
 - Emerging compounds identified in untreated leachates samples at nanogram or microgram par liter levels
 - Chlorinated alkylphosphates
 - Carcinogenic flame retardant (TCPP)
 - Neurotoxin plasticizer (NBBS)
 - Insect repellent (DEET)
 - PFC's
 - Pharmaceuticals
 - Personal care products such as NSAIDs (ibuprofen and naproxen)
 - Polycyclic musk compounds

- Many emerging compounds are identified at higher levels in the water phase then in the particles phase.
- Since they also seem to be **rather persistent**, they might be pose significant removal challenge in treatment processes.
- Therefore, Eggen *et al.* (2010) have shown that municipal landfill leachates may represent a significant source of concern for legacy, new and emerging chemicals in groundwater.
- => Additional knowledge about the environmental fate and toxicology of emerging compounds is necessary in order to address the need for improved treatment technologies for sustainable and efficient removal of these compounds.

Conventional treatments

- Conventional landfill leachate treatments can be classified into three major groups:
 - (a) leachate transfer: recycling and combined treatment with domestic sewage,
 - (b) biodegradation: aerobic and anaerobic processes
 - (c) chemical and physical methods: chemical oxidation, adsorption, chemical precipitation, coagulation/flocculation, sedimentation/flotation and air stripping.

- Due to its reliability, simplicity and high cost-effectiveness, biological treatment (suspended/attached growth) is commonly used for the removal of high concentrations of BOD.
- Biodegradation is carried out by microorganisms, which can degrade organics compounds to carbon dioxide and sludge under aerobic conditions and to biogas (a mixture comprising chiefly CO₂ and CH₄) under anaerobic conditions.
- Biological processes have been shown to be very effective in removing organic and nitrogenous matter from immature leachate when the **BOD/COD** ratio has a high value (>0.5).
- With time, the major presence of refractory compounds (mainly humic and fulvic acids) tends to limit process's effectiveness.

- Among the biological treatments, AS, **SBR** and **UASB** are the most frequently applied.
- These treatments are effective to
 - remove over 90% of COD with a concentration ranging from 3500–26 000 mg.L⁻¹,
 - to achieve 80% of NH₃–N removal with a concentration ranging from 100–1000 mg.L⁻¹.

Aerobic treatment

- In aerobic treatments, microbes consume organic materials as their energy sources in the presence of oxygen.
- In addition, an aerobic process oxidizes NH₃–N into nitrate or biomass.
- The most common aerobic biological treatments are AS, **SBR**, AL and RBC.

• SBR

- Recently SBR has been widely employed as one of the most promising options for the biological treatment of leachate.
- Basically SBR is an activated sludge treatment in a reactor.
- This technique can capture solids and remove organic compounds in a vessel, eliminating the need for a clarifier.

- There are five operating phases in an SBR system:
 - filling,
 - reacting,
 - settling,
 - Drawing
 - idling.

• SBR

- This reactor design is ideally suited to **nitrification-denitrification or nitritation-anammox** studies, as it provides an operational regime compatible with a concurrent nitrification and the oxidation of organic carbon.
- Between the filling and drawing phases, the operating conditions could be controlled by a periodical change of the concentration of O₂, substrate and inorganic nutrients.

• SBR

		Walance of	concentration in leachate/mg L^{-1}		Loading rate/ kg m ⁻³ day ⁻¹					Removal efficiency (%)	
Location	HRT/day	reactor/L	COD	NH ₃ –N	COD	NH ₃ –N	BOD ₅ /COD	COD/TOC	Optimum pH	COD	NH ₃ –N
NA	0.5	NA	5295	872	NA	NA	0.4-0.5	NA	9.1	68	NA
NA	1	NA	100-150	100-330	0.1	NA	NA	NA	NA	38	99
Canada	3.2	NA	12 760	179	0.6	NA	0.46	NA	7.1	97	99
Istanbul (Turkey)	1.0	5	26 000	1000	NA	120	0.58	NA	7.5	97	99
Izmir (Turkey)	0.29	4	10 000	1590	NA	NA	NA	NA	8.6	64	23
•	2.0	2.75	14 900	2780	0.8	NA	0.63	3.27	7.52	74	NA
Thesaloniki (Greece)	20	8	5000	1800	NA	NA	0.20	NA	7.5	90	NA
	20	8	15 000	1800	NA	NA	0.37	NA	7.5	75	70
Sobuckzyna (Poland)	NA	5	3500	800	NA	NA	NA	NA	8.3	90	70
Wysieka (Poland)	12	0.5	1348	NA	NA	NA	0.38	3.57	NA	83	NA
Chandler (Australia)	0.25	6	1100	900	NA	5.9	0.05	NA	7	NA	100

COD removal from 38 to 97 % NH₃-N removal from 23 to 100 %

From Kurniawan et al. (2010) J. Environ. Monit., 2010, 12, 2032-2047

• SBR

- There are various advantages in using SBR for leachate treatment such as:
 - the ease of operation and maintenance,
 - its ability to treat a wide range of contaminant loading in a single reactor,
 - less sludge bulking,
 - tolerance to shock loading
 - no separate clarifiers required, thus reducing operational costs.
- In spite of its advantages, SBR has a variety of drawbacks such as:
 - odor generation,
 - excess sludge production, as well as high energy consumption.

• Anaerobic process.

- In the anaerobic process, microbes are cultivated in the absence of oxygen, while organics are converted by methanogenic bacteria to CO₂, CH₄ and other metabolite products as the end products.
- This treatment is preferable to provide energy, while simultaneously reducing greenhouse gas emissions.
- Due to the substantial amount of readily biodegradable VFA compounds, anaerobic treatment is suitable for **young leachate**.
- Therefore, the most extensively applied anaerobic process for leachate treatment is UASB.

• Anaerobic process.

The UASB process was initially developed in The Netherlands in 1970-80 with the following basic concepts: (i) the separation of the solid and gas phases from the liquid and (ii) the conversion of organic matter in the leachate into methane as bioenergy.

- Uflow anaerobic sludge blanket (UASB).
- In recent years, the UASB reactor has gained global acceptance to treat leachate with a COD concentration higher than 10000 mg.L⁻¹.
- Basically, an anaerobic process requires a reactor containing waste and bacteria responsible for the digestion process.
- When the waste enters the bottom of the reactor and flows upward through a blanket of biologically formed granules, the microbes in the reactor form granules through self-immobilization of the bacteria cells.
- Concentrated waste in the form of sludge is then added into the reactor, where it is mixed with the reactor's contents to produce biogas as presented in the following reaction:

•
$$(C_6H_{10}O_5)_n + nH_2O \rightarrow 3nCO_2 + 3nCH_4$$

- where n represents the coefficient of reaction of each molecule.

- Uflow anaerobic sludge blanket (UASB).
- Various parameters play major roles in enhancing the effectiveness of a UASB reactor for leachate treatment.
 - (i) the operating conditions (temperature, organic loading rate, hydraulic retention time and the upflow velocity),
 - (ii) the influent characteristics (strength of leachate, molecular size distribution),
 - (iii) the treatment system (reactor configuration, control system),
 - (iv) the sludge bed characteristics.

		Volume of leachate in	Initial concen in leach L ⁻¹	tration hate/mg	Loading rate/ kg m ⁻³ day ⁻¹		Concentration	Biogas production/		Removal efficiency (%)	
Location	HRT/day	L L	COD	NH ₃ –N	COD	NH ₃ –N	of CH_4 (%) (v/w)	(COD)	рН	COD	NH ₃ –N
Izmir (Turkey)	4.5	2.5	20 000	679	16	16	62	9.5	7.0–7.3	98	NA
Komurcuoda (Turkey)	2	7.85	47 800	2690	8.2	NA	NA	NA	NA	90	NA
Komurcuoda (Turkey)	2.0	NA	47 800	2680	23.5	NA	NA	NA	8.3	80	NA
Harmandali (Turkey)	0.42	10	9400	2500	9.4	NA	72	0.18	7.3–7.8	85	NA
Harmandali (Turkey)	2.8	10.35	25 000	NA	10	NA	90	440	7.3–7.8	94	NA
Odayeri (Turkey)	1	13	50 000	2350	2.5	NA	75	515	7.5-8.0	90	NA
La Zoreda (Spain)	9	9	19 400	61	NA	NA	73	110	7.0	87	NA
Meruelo (Spain)	0.1	NA	64 000	1991	21.4	NA	NA	370	8.6	91	NA
Asturias (Spain)	9	NA	4980	2670	2.3	NA	75	290	8	87	NA
(Spain)	0.5	NA	7000	NA	5	NA	NA	NA	7–7.5	70	NA
Hong Kong SAR	6.6	2.8	15 700	2260	2.4	NA	92.5	NA	7.1-8.5	90	NA
Taichung (Taiwan)	1.5	13.5	12 050	424	6.7	NA	52	187	7.2	68	NA
Ammassuo (Finland)	3	NA	32 000	NA	4.0	NA	NA	0.32	6.5-7.0	75	NA
Ammassuo (Finland)	0.45	0.38	4000	160	10	NA	90	0.32	6.8–7.6	75	80
Korea	3.9	41	7000	NA	15.8	NA	81	5.5	7.5	96	NA
Korea	6	0.75	7000	NA	4.2	NA	NA	NA	8–9	80	NA
Nepean (Canada)	1	1.40	9190	NA	19.7	NA	NA	340	7–9	91	NA
Sweden	2.9	0.84	20 000	NA	4.7	NA	65	230	6	98	NA
Kohtla-Jarve (Estonia)	2.1	0.2	1800	NA	0.8	NA	NA	NA	7	95	NA
Thessaloniki (Greece)	NA	2	12 000	920	NA	NA	NA	NA	NA	98	50
Bavel (The Netherlands)	12	NA	35 000	1600	25	NA	NA	NA	6.8	85	NA

^a NA: not available.

From Kurniawan et al. (2010) J. Environ. Monit., 2010, 12, 2032-2047

- Uflow anaerobic sludge blanket (UASB).
- The UASB process for leachate treatment has several advantages.
 - This technique enables the liquid, gas and solid phases in the waste to be separated in one vessel without requiring a separate mechanical mixing and an additional settling unit.
 - Unlike other biological processes, UASB has many competitive advantages in terms of its ability to treat the varying strength and composition of leachate.
 - In addition, the sludge generated from the UASB process has good settling characteristics, provided that the sludge is not exposed to heavy mechanical agitation.
 - Moreover, methane as the biogas produced under the anaerobic condition is a new resource of energy.
- In spite of its benefits,
 - UASB can not cope with high loading rate variation.
 - In addition, it requires a long starting up period (2–8 months) for the development of anaerobic granules and acclimatization.
 - These drawbacks may limit its application for leachate treatment. 26

		Ini rar L		Initial concer range in leach L^{-1}	Initial concentration range in leachate/mg Removal L^{-1} efficiency (%)				
	No.	Type of treatment	Target of removal	COD	NH ₃ -N	COD	NH ₃ -N	Advantages	Disadvantages
	A. A 1.	erobic Activated sludge	Unsettleable organic	1000–24 000	115-800	95–98%	90–99	Can be combined with nitrification process:	Long retention time, O&M cost
		sludge	material and NH ₃ -N					sludge may be used as fertilizer; can remove suspended solid, BOD ₅ , COD	is high; system depends on varying organic loading rate; sludge production; high energy cost; sensitive to hydraulic overloads
-	2	SBR	Organic compounds and NH ₂ -N	3500-26 000	100-1000	90–97	99–100	A clarifier is not required	Sludge and odor generation; high energy consumption
	3	Nitrification	Nitrogen compounds only	1000–2116	270–535	30–55	90	High nitrification rates during summer; less sludge production; low O&M cost	Inhibition if NH ₃ –N concentration is high; high energy consumption
	4.	Aerated lagoon	Organic compounds and NH ₃ -N	1733–34 000	104–175	83–98	>99	Low O&M cost; can operate in the fluctuating organic concentrations	Long retention time; excessive algal growth; odor gene-ration; high energy consumption
	В. А 1	IIASB	Organic	1800-64 000	160-920	91-98	50-80	Produces methane gas	A long starting up
	1.	0100	compounds and NH ₃ -N	1000-04 000	100-720	71-70	50-00	as an energy; requires no separate mechanical mixing; liquid, gas and solid phases can be separated in one vessel; Sludge	period; a narrow pH range is required; ammonia toxicity; inhibition by heavy metals
From	Kuri	niawan et al. (2	2010) J. Envir	on. Monit., 2	2010, 12,	2032-2	047	has good settling properties	

Physicochemical treatments

- Physical and chemical processes include reduction of suspended solids, colloidal particles, floating material, color, and toxic compounds by :
 - either flotation, coagulation/flocculation, adsorption, chemical oxidation and air stripping.
- Physical/chemical treatments for the landfill leachate are used in addition at the treatment line (pre-treatment or last purification) or to treat a specific pollutant (stripping for ammonia).

Presentation of AOP's

- Chemical oxidation is a widely studied method for the treatment of effluents containing refractory compounds such as landfill leachate. Growing interest has been recently focused on advanced oxidation processes (AOP).
- Most of them, except simple ozonation (O₃), use a combination of strong oxidants, e.g. O₃ and H₂O₂, irradiation, e.g. ultraviolet (UV), ultrasound (US) or electron beam (EB), and catalysts, e.g. transition metal ions or photocatalyst.

Why AOP's?

- AOP, adapted to old or well-stabilized leachate, are applied to:
 - oxidize organics substances to their highest stable oxidation states being carbon dioxide and water (i.e., to reach complete mineralization),
 - improve the biodegradability of recalcitrant organic pollutants up to a value compatible with subsequent economical biological 29 treatment.

List of typical AOP systems

with irradiation	without irradiation
Homogeneous System	
O ₃ /ultraviolet (UV)	O_3/H_2O_2
H_2O_2/UV	O ₃ /OH ⁻
electron beam	H_2O_2/Fe^{-2} (Fenton's)
ultrasound (US)	
H_2O_2/US	
UV/US	
$H_2O_2/Fe^{-2}/UV$ (photo-Fenton's)	
Heterogeneous Systems	
$TiO_2/O_2/UV$	electro-Fenton
$TiO_2/H_2O_2/UV$	

H2O2/UV, H2O2/Fe2+ and H2O2/Fe2+/UV in leachates treatment (updated from Wang et al. [13])

$COD (mg L^{-1})$	BOD (mg L^{-1})	pН	COD removal (%)	BOD/COD after treatment	UV (W)	$H_2O_2 (gL^{-1})$	Fe^{2+} (mg L ⁻¹)
H ₂ O ₂ /UV							
760	-	-	22	-	150	3.4	
760	-	3	99	-	150	3.4	
1000-1200	<10	3.0-4.0	90	-	15	0.5	
1000-1000	<10	3.0-4.0	85	-	150	0.5	
1280	100	2	57	-	100	-	
1280	100	2	59	-	500	-	
430 TOC	-	-	42 TOC	-	300	-	
26,000	2920	3	79	0.37	1500	5.19	
26,000	2920	3	91	0.4	1500	13	
26,000	2920	3	96	0.45	1500	26	
H ₂ O ₂ /Fe ²⁺							
-	-	3	50	-		1.6	-
1050-2020	50-270	4	60	-		0.2	600-800
1200	-	-	63	0.15		-	-
1150	3-5	3	70	-		2.44	56
2000	87	3.5	69	0.58		1.5	120
330	<8	7.5	72	0.3		$10 \text{mL} \text{L}^{-1}$	20
282-417 TOC	-	3	49-76 TOC	-		1	1250
-	-	3	55	-		2.2	-
1500	30	3.5	75	-		1.65	645
Old leachate	-	-	-	-		1	1000
1800	225	3	52	0.22		1.5	2000
1800	225	4.5	45	0.27		1.2	1500
1500	75	6	70	-		0.2	300
1500	75	8.5	14	_		0.2	300
10,540	2300	8.2	60	0.5		1	830
H ₂ O ₂ /Fe ²⁺ /UV							
1150	3-5	3	70		500-1000	1.15	56
1150	-	3.2	70		UVA	1.15	72
440	_	2.7	78		UVA	0.44	30

From Renou et al., 2008

Electro-Fenton

- Fenton's reaction assisted by electrochemistry
- Electrochemical advanced oxidation process
- In situ electrochemical generation of Fenton's reagent $(H_2O_2 + Fe(II))$ allowing the formation of •OH

Electrochemical reactor: Open, cylindrical and non divided

- Cathode:Carbon-felt
- Anode: Pt, BDD or mixed metal oxides
- Reagent : compressed air / O₂
- Catalyst : Fe^{3+} , Cu^{2+} , ... (< 1 mM)

Electro-Fenton: Electrocatalytic production of °OH

Mix of 8 French landfill leachates : mainly MSW, Industrial wastes

Biodegradability improvement after Fenton and related processes.

Process	Initial BOD ₅ /COD	Final BOD ₅ /COD	References
Fenton	0.18	0.38	Guo et al. (2010)
Fenton	0.44	0.68	Goi et al. (2010)
Fenton	0.63	0.88	Kochany and
			Lipczynska-Kochany (2009)
Photo-Fenton	0.13	\sim 0.4	De Morais and Zamora (2005)
Fenton	0.2	0.5	Lopez et al. (2004)
Fenton	-	0.5	Kim et al. (2001)
Electro-Fenton	0.1	0.3	Lin and Chang (2000)

Integrated advanced oxidation process (AOP) and biological treatments.

- In the past three decades (1976–2005), increasing scholarly interest has been shown in the application of AOP such as ozonation, Fenton's oxidation to transform toxic pollutants into relatively harmless substances.
- Among the AOPs reviewed, **ozonation and the Fenton's oxidation** are the most frequently investigated and commonly employed.
- However, other novel photo-oxidative technologies using UV LED as a light source or atomic layer deposit thin films as a photocatalyst are currently tested for its feasibility for leachate treatment.
- A combination of AOP and biological process enhances its treatment performance for leachate. An almost complete COD removal (98%) was attained by combining AS and Fenton's oxidation (COD: 7000 mg.L⁻¹) and/or the AS and wet air oxidation (COD: 4140 mg.L⁻¹).

Integrated advanced oxidation process (AOP) and biological treatments

. .	Type of	Coagulant/		Ozone consumption/	Initial concentration in leachate/mg L ⁻¹		DOD	CODI		Removal efficiency (%)	
of landfill	treatment	Adsorbent/ Oxidant	Dose/g L ⁻¹	$mg O_3 per mg COD$	COD	NH ₃ –N	COD/	TOC	pН	COD	NH ₃ –N
Taiwan	Coagulation + Electro-Fenton + SBR	Fe(II)SO ₄ /H ₂ O ₂	0.75	_	1941	151	0.3	NA	4	95	81 👞
Hong Kong	UASB + Ozonation	O ₃	0.05	16	15 700	2260	0.06	NA	7-8	93	NA
Hong Kong	UASB + Ozonation + Fenton oxidation	O_3 Fe(II)SO ₄ /H ₂ O ₂	0.05 0.3 0.2	25	15 700	2260	0.06	NA	5	99	NA
Kimpo (Korea)	Fenton oxidation + Activated sludge	Fe(II)SO4/H2O2	0.9 0.9	NA	7000	1800	0.15	NA	3.5	98	89 ┥
Germany	Photochemical + Activated sludge	UV/H ₂ O ₂	1 4	_	920	NA	0.005	NA	4.0	89	NA
Fossalta (Italia)	Wet oxidation + activated sludge	_	_	_	4140	998	0.46	NA	7.8	98	NA
Flanders (Belgium)	Ozone + activated sludge	O ₃	2.8	3.7	895	626	0.05	NA	8.2	81	NA
_	Ozone + activated sludge	O ₃	0.05	2.0	2800	250	0.54	NA	6	97	NA
Finland	Ozone + activated sludge	O ₃	5.00	0.3	560	NA	0.06	2.80	9.5	95	NA
Teuftal (Switzerland)	Ozone + Nitrification	O ₃	0.03	NA	1500	600	0.23	NA	7.0	98	NA
^{<i>a</i>} NA: not availa	able.								Ł		

Conclusions and future perspectives

- Several treatment strategies may be designed
 - For mature landfill
 - AOP pre-treatment (enhance biodegradability) followed by UASB and/or SBR biological treatment
 - Biological treatment (SBR or UASB) followed by AOP post-treatment (removal of residual biorefractory COD) prior to release into sewer network or the environment
 - Residual organic micropollutants and toxicity should be evaluated prior discharges

• Thank you for your attention

EMJD : Environmental Technologies for Contaminated Solids, Soils and Sediments (ETeCoS³)

Literature references

- Renou et al. (2008) Landfill leachate treatment: Review and opportunity Journal of Hazardous Materials, 150 (3), 468-493.
- Umar et al. (2010) Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate Waste Management, 30 (11), 2113-2121.
- Panizza et al. (2010) Electrochemical process for the treatment of landfill leachate. Journal of Applied Electrochemistry, 40 (10), 1721-1727.
- Wiszniowski et al. (2006) Landfill leachate treatment methods: A review Environmental Chemistry Letters, 4 (1), 51-61.
- De Morais and Zamora (2005) Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates Journal of Hazardous Materials, 123 (1-3), 181-186.
- Thomas et al., (2009) Bioassays for the evaluation of landfill leachate toxicity. Jounral of Toxicology and Environmnetal Health, Part B 12, 12-83
- Kurniawan et al., (2010) Biological process for treatment of landfill leachate. Journal of Environmental Monitoring 12, 2032-2047.
- Eggen et al., (2010) Municipal lanfill leachates: A significant source for new and emergent pollutants. Science of the Total Environment 408, 5147-5157.
- Yalmaz and Ozturk (2001) Biological ammonia removal from anaerobically pretreated landfill leachate in sequancing batch reactors (SBR). Water Science and Technology 43, 307-314.
- Brillas et al. (2009) Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry, Chem. Rev. 109, 41 6570–6631.