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INTRODUCTION

Leonardo da Vinci (1452-1519) was
the first one to use the word
turbulence (turbolenza) to describe
the vortical irregular motion of a
fluid flow
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SOME PRELIMINARIES
REYNOLD’S EXPERIMENT (1883)

Flow pattern of the dye at low velocities. “Direct” motion or laminar
regime.

)Em

Flow pattern of the dye at high velocities. “Sinuous” motion or
turbulent regime.

5855

A\

Flow pattern of the dye in the “sinuous” motion or turbulent regime
when illuminated with a sparkling light. Reynolds observed the eddy
or curly motion of the fluid.

Experimental set-up of Reynold’s experiment, taken from his

paper from 1883. FIGURES FROM REYNOLDSI PAPER
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SOME PRELIMINARIES

Newton’s second law for an incompressible Newtonian fluid in a gravitational field, is
written as:

Component x:
ou odu du ou op 0%u N 0%u N 0%u N

Component y:

Component z:
ow ow  ow ow op 9%w N 9%w N %w N

Or, in vectorial form: §®$ \O

ov
p(—+(13-|7)17>=—|7p+,u7217+p§ ) <<,0-
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SOME PRELIMINARIES —_—

Formally, the problem is solved: We have 4 differential equations (with its initial and
boundary conditions) and 4 unknowns:

Continuity:

Navier-Stokes equations (3):

61_7) - = 2= -
p E+(v-\7)v =—Up+uV<v +pg

Unknowns: p,uU,v,w

This set of equations do not have restrictions regarding the flow regime. Formally, they can
be applied any flow regime: laminar, turbulent or transitional laminar-turbulent.

SOME PRELIMINARIES s

The equations of Navier-Stokes are extremely difficult to solve,
except for some simple particular cases. Although they are valid for
any flow regime, they are only applied to laminar flows to get
analytical solutions.

This limitation was not known when Navier (1822) and Stokes
(1845) published their equations (at that time, laminar and
turbulent regimes where not identified yet).
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SOME PRELIMINARIES
PRESENCE OF EDDIES IN TURBULENT FLOWS

The existence of eddies in turbulent flows was recognized in the XIX century.

SOME PRELIMINARIES
VELOCITY MEASUREMENTS IN TURBULENT FLOWS

VELOCITY TIME SERIES (z = 17.33 cm)
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Record of the three components of the velocity measured at one location in a
turbulent flow in an open channel
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SOME PRELIMINARIES
REYNOLDS’ DECOMPOSITION

) VE O =V®+V @1

vﬂ S S s
WM

|

AVERAGE
COMPONENT
\\/ \V] t
FLUCTUATING
u=1i4+u COMPONENT
v=v+7
w=w+w
p=p+p
SOME PRELIMINARIES REYNOLDS AVERAGED NAVIER STORES

REYNOLDS’ EQUATIONS

Replacing the decomposed velocities in the continuity equation:

d(u+u v+ d(w+w'
(u u)+ (v 17)+ (w W)=0
0x dy 0z

Averaging over the turbulence, we get:

05 o5 o CONTINUITY EQUATION IS SATISFIED
v W %W _y <—— FORTHE AVERAGE COMPONENTS OF
x 0dy 0z THE VELOCITIES

o ov aw' CONTINUITY EQUATION IS SATISFIED
St = <—— FOR THE FLUCTUATING COMPONENTS
x oy oz OF THE VELOCITIES
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SOME PRELIMINARIES
REYNOLDS’ EQUATIONS

Replacing the decomposed velocities in the x component of the Navier-Stokes equations
and after some algebra which is detailed in the class notes the following equations is
obtained:

= - — 25
ox  dy oz ax T dy Tz TAVIU S POy

ou _ou _oum ou? ouv ouw op
p 0x

After obtaining this equation, Reynolds had a bright idea that allowed him to interpret the

terms arising from the velocity fluctuations: w'?, u'v’, u'w’.

SOME PRELIMINARIES R
REYNOLDS’ EQUATIONS

Thus the x component of the averaged Navier-Stokes equation becomes:

da+aﬁ+aﬁ+au'w' B aﬁ+ P
P\ac T ax TTay "oz )T ax KV HT PO

To give the form of:

du aﬁJraW _ 0P o
p dt \0x dy B HE U T POx
du  op uz ouv'  ou'w BRIGHT IDEA!!!
—_— |72— _ -
Par =~ “ox THVTHTPIx p(ax+ ay az>



19/12/2017

SOME PRELIMINARIES
REYNOLDS’ EQUATIONS

SF + 2+ 6? N ou'v' N u'w’
-— u
\ FORCES \
FORCES FORCE APARENT FORCES
FosgfzacETcl;\F'GleTDHE = DUETO + VIDI;J(fJL?S + DUETO + ORIGINATED BY THE
PRESSURE  (rofccee  GRAVITY TURBULENCE

|

APARENT FORCES :
THEY ARE NOT REALLY FORCES.
THEY ARE FLUXES OF MOMENTUM DUE TO THE
TURBULENT FLUCTUATIONS WHICH ARE
INTERPRETED AS FORCES (REYNOLD’S GREAT IDEA)

SOME PRELIMINARIES S
REYNOLDS’ EQUATIONS

Defining the turbulent or Reynolds stresses as:

_ ) _ 7 _ T
Trxx = —PU", Tryx = —PUV , Trzxy = —PUW

The viscous stresses are:

ou ou ov ou ow
TVxxzzﬂa; Tyyx = U a_y'f‘a y Tyzx = U a‘l'a

The total stresses are:

Tox = Tvxx T Trxxr Tyx = Tvyx T Tryxs  Tox = Tyze + Trax
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SOME PRELIMINARIES
REYNOLDS’ EQUATIONS

x component of the momentum equation:

THESE ARE THE
on  _0n _0m\_ 0p 0Ty 0Ty 0T, REYNOLDS EQUATIONS
P\t 75,7 %5, )=~ T x T3y T o, TP9% |— FORTHE TURBULENT
FLOW PUBLISHED IN
In the same way: 1895
y component of the momentum equation: In general:
v v v 6;7 0Tyy 0T,y 0T,
—+T— — Ty = Tyi; +
p (“a gyt 82) ay " ox "oy oz P9y = Tvij Ty
t of th t ti (8 0 9%
Z component o e momentum equation: .
P a tvij = ax, 0x;
0w aw _ow\ _ ap 0T, 0T, 0T, __
p<ua+v@+wa—z>——g+ ax + 3y + 2 +pg, Trij = —pUjy;

SOME PRELIMINARIES i
THE PROBLEM OF TURBULENCE CLOSURE

Although the Reynolds equations are an important step in the study of the turbulence,
they do not solve the problem.

We have 4 differential equations: Continuity (1) and Reynolds’ equations (3)

We have 10 unknowns: i, 7, w,p, u w2, vZ,w'2,u'v uw, v'w

We need relationships for the Reynolds stresses: —pu{u]f
As there is not a theory based only on the first principles of the physics, all the available

models necessarily require some experimental data.
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SOME PRELIMINARIES BQUATIONS AND TURBULENCE MODELS
BOUSSINESQ’S CLOSURE OF THE TURBULENCE: EDDY VISCOSITY

Boussinesq proposed his model in 1877 (almost 20 years before that the Reynolds’
equations were published).

The viscous stresses are given by:
(o N ot
TVU il ax] axl-

In analogy to the viscous stresses, Boussinesq proposed an eddy viscosity coefficient &
such that

_ (0w, 9%
TTU =€ (axJ' + axl'

Prof. ALDO TAMBURRING
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SOME PRELIMINARIES
BOUSSINESQ’S CLOSURE OF THE TURBULENCE: EDDY VISCOSITY

0u; N ou; 0u; N ou;
. = — — ) .= 8 —_— —_—
TVU K ax] axi TTU 6x] axi
There is a strong difference between p and &:
- The dynamic viscosity u is a property of the fluid
- The eddy viscosity € is a property of the flow

- In the turbulent region of the flow u < ¢

For open channel flows, Boussinesq proposed:

€ = pgAhu,
»_VELOCITY AT THE WALL
COEFFICIENT THAT DEPENDS
ON THE WALL ROUGHNESS FLOW DEPTH



19/12/2017

Prof. ALDO TAMBURRING

AGED NAVIER-STOKES

SOME PRELIMINARIES

REYNOLDS A}

BOUSSINESQ’S CLOSURE OF THE TURBULENCE: EDDY VISCOSITY

According to Boussinesq, the velocity distribution in a 2-D uniform, permanent open-
channel flow is:

AhuO

Y !

LAMINAR FLOW/

/ . ,
/ Boussinesq’s result does not
// satisfy the non-slip condition!!
-~ ” TURBULENT FLOW
P ~ (Boussinesg, 1877)
-
-
-
i
Ug
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SOME PRELIMINARIES R

PRANDTL'S CLOSURE OF THE TURBULENCE: MIXING LENGTH

Ludwig Prandtl (1875-1953) is among the greatest researchers in fluid mechanics of the
XX century. His most important contribution is his boundary layer theory (1904), by which
he was nominated to the Nobel prize in 1928 (he did not get it).

In his closure of the turbulence
problem, Prandtl made an analogy with
the kinetic theory of gases, according
to which the gas molecules can travel,
preserving its momentum, until they
collides with other.

The average length that the molecules travel
before colliding is named “free mean path”

10
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SOME PRELIMINARIES SR
PRANDTL'S CLOSURE OF THE TURBULENCE: MIXING LENGTH

The idea behind the mixing length:
! I ing leng In analogy to the kinetic theory

of gases, according to Prandtl,
a(y) W) parcels of fluid are displaced
y+1 & VYIthOUt loosing their /c{ent/ty
a(y+10) B (i.e., they preserve their
momentum) due to the
v'(y) turbulent fluctuations.

() A The average distance travelled
by the parcels of fluids is
denominated mixing length (l)

<l

SOME PRELIMINARIES
PRANDTL'S CLOSURE OF THE TURBULENCE: MIXING LENGTH

() w(y) A parcel of fluid, initially in A (located at
J4l T y), due to the fluctuation of the vertical
a(y + 1) B velocity v/, moves to B (located at y + [),
preserving its initial momentum pu(y),
v'(y which is imposed at the new location.
Thus, the new velocity at y + Lis u(y).

o) Aty + [, the instantaneous change from

u(y + 1) to u(y) corresponds to the
velocity fluctuation u'(y).

<l

u' =uly) —uly+1)

11
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SOME PRELIMINARIES
PRANDTL'S CLOSURE OF THE TURBULENCE: MIXING LENGTH

u =uly)—uly+1)
Expanding in Taylor’s series:

. _ ou , . ou
u —u(y)—(u(y)+@l+--->—> u ——l@

Experimental evidence: |u'|~|v’|

Thus :
, ou
vi~l—
dy
v>0,u<0->uv <0
—\2
i i 11 N au
v<0,u">0 »u'v' <0 TTxyz_pu’U,_)TTxyzpF(a_y)

We cannot go further in the analysis. We need an expression for the mixing length [

Prof. ALDO TAMBURRING

I AGED NAVIER-STOKES

BOUSSINESQ AND PRANDTL MODELS = s

The models before presented have serious limitations in their
application and most of the time they cannot applied to
conditions different to those that they were developed.

However, they are the base of more general models.

12
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SCALES OF TURBULENCE

Before presenting closure models, it seems natural to ask: Why do not

solve numerically the continuity and Navier-Stokes equations?
V-v=0

oV 25 =
Plae +@-V)U|=—-Vp+uV?v + pg

Numerical solution of the above equations for turbulent flows is a valid
strategy, but it requires a discretization smaller than the smallest eddy of
the turbulent flow.

What is the smallest scale associated to the turbulence?

KOLMOGOROV’S SCALES

Turbulent flows convey eddies of many sizes. The largest, obviously, scales with the
dimension of the flow domain. There is a continuum of eddy sizes from the largest to the
smallest, which dissipates the energy due to the fluid viscosity.

LARGEST EDDY CASCADE OF ENERGY SMALLEST EDDY
"\
O~
PRODUCTION DISIPATION OF ENERGY
OF ENERGY BY VISCOUS FRICTION
ESCALES : LU7T Nk, Vi, Tk

13
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KOLMOGOROV'’S SCALES RENOLDS AVERACED NAVIER STOKis

Kolmogorov (1941) proposed that the scales of the smallest eddy depends on the
kinematic viscosity (v) and the energy dissipation rate per unit mass ().

Dimensions: [v] = L*T~! , & = L2T~3. Using dimensional analysis is easy to get:

N
LENGTH SCALE: Nk = <?> EDDY SIZE

v\1/2 TURNOVER TIME
TIME SCALE: Tk = (_)

&
VELOCITY SCALE: vy = (ve)l/4 EDDY VELOCITY

Prof. ALDO TAMBURRING

REYNOLDS AVERAGED NAVIER-STOKES

KOLMOGOROV’S SCALES SRS M RN CE DS

PRODUCTION (P) = DISIPATION (¢)
u: ud

P~— = —

T L

LARGEST EDDY > CASCADE OF ENERGY > SMALLEST EDDY
AT
/\/\;) VL

P = &

3 VISCOUS DISSIPATION DEPENDS ON
E~— THE DYNAMICS OF THE LARGE SCALES
(DOES NOT INVOLVES VISCOSITY)

14
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KOLMOGOROV’S SCALES S
ru3
e~
3\ 1/4 3 \1/4
_ A% \% _ -3/4
LENGTH SCALE: Nk = (;) ~ <—u3 Lg) L > ng=Red¥g
1/2
TIME SCALE: Ty = (E) »  Tg =Re 12T
VELOCITY SCALE: v = (ve)l/4 -~  vg=ReV*u
KOLMOGOROV’S SCALES RIINOLDG AVERACIDNAVIRSTOS

To have an idea of the magnitude of the scales, let’s consider the flow in an open channel.
Water depth: 0.3 m, channel width: 0.5 m, slope: 0.0001, Manning’s n: 0.014 - V ~0.2 m/s

Estimating L~ 0.3m, U~V ~0.2m/s,v~10"°m2/s - Re ~ 6 x 10*

Nk = Re™3/*L ~0.08mm 14 = Re Y27 ~0.006s

A numerical solution of the Navier-Stokes equations (Direct Numerical Simulation) requires a
discretization such that:

T
Ax~Ay~Ay<n7K=O.O4mm , At<7K=O.003s

DNS IS NOT PRACTICAL FOR ENGINEERING APPLICATIONS YET

15
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REYNOLDS A3

REYNOLDS’ EQUATION IN INDEX
NOTATION (EINSTEIN CONVENTION)

Continuity and Reynolds equations are written in a compact form using a index notation:

ot
CONTINUITY —=0
axi

0w o (TU>
MOMENTUM (REYNOLDS) EQUATIONS Uym—=%—|—
( ) Q ] ax] ax] P

_ — 1(0m; 0%
Tij =—p6ij+2/,t5ij—puiuj Sl] =E E'Fa
j i

Prof. ALDO TAMBURRING
REYNOLDS AVERAGED NAVIER STOKES

KINETIC ENERGY EQUATION B

The equation for the instantaneous kinetic energy is obtained making: (N — Seq.) - V

Making the Reynolds’ decomposition of the kinetic energy equation and taking the average, the equation
for the mean kinetic energy and turbulent kinetic energy are obtained:

d (1__ 4] _
MEAN KINETIC ENERGY (— -u-> = a_xj(Tijui) — T;jSij

paja_xj Zut i

TRANSPORT OF THE KINETIC

PRESSURE
WORK ENERGY OF THE MEAN FLOW BY
REYNOLDS STRESSES
a2 (Laa) =2 (=Pu; + 2viis,, — W, | - 28,5, + WS,
Jaszll axj p] - [ 2 Rt =i )
\ TRANSPORT OF THE KINETIC VISCOUS PRODUCTION OF
ENERGY OF THE MEAN FLOW BY DISSIPATION TURBULENT KINETIC

RATE OF CHANGE OF THE KINETIC VISCOUS STRESSES \ ENERGY

ENERGY OF THE MEAN FLOW ‘ i ‘

IN MOST FLOWS THESE VISCOUS TERMS ARE NEGLEGIBLE

16
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NCE MODELS

TURBULENT KINETIC ENERGY e

TURBULENT KINETIC ENERGY 1/0u’ Ou]'-
15

- ax] a_xl

— a 1? a 1 7.1 1 T 1.7 T 77 _
uj% Euiui =—$ ;ujp +§uiuiuj—2vuisij —uiujSij—szijsij
j J

‘ PRODUCTION OF
RATE OF CHANGE OF THE PRESSURE TURBULENT KINETIC
TURBULENT KINETIC ENERGY WORK  1RANSPORT OF ENERGY £
TURBULENT KINETIC VISCOUS
ENERGY BY VELOCITY DISSIPATION
FLUCTUATIONS ‘
1 uIZ +‘U'2+W'2 _—
k= Euiué — > TRANSPORT OF l
TURBULENT KINETIC DEFORMATION WORK
ENERGY BY VISCOUS

(MOST IMPORTANT TERMS)
EFFECTS

Prof. ALDO TAMBURRINOG
REYNOLDS AVERAGED NAVIER STOKI

TURBULENCE MODELS N A AR oo

Turbulence modelling has been compared with the model of epicycles and deferents used
in astronomy from ancient Greeks until the middle ages to explain the retrograde motion
of the planets. Astronomers were constantly adding epicycles over epicycles to adjust the
motions to new data.

Epicycles on
picycles

Planet

TURBULENCE MODELLING DOES NOT CONTRIBUTE WITH NEW
KNOWLEDGEMENT OF THE PHYSICS OF TURBULENCE

17
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TURBULENCE MODELS

In general, the goal of all the models is to find the eddy viscosity that will permit to
compute the Reynolds stresses —pu{ujf.

The concept of turbulent viscosity (or eddy viscosity) is the basis of all the models.

vy (kinematic) eddy viscosity [L2T™]

vy VL

CHARACTERISTIC CHARACTERISTIC
VELOCITY SCALE LENGHT SCALE

OF THE LARGE SCALE MOTION

Prof. ALDO TAMBURRING

TURBULENCE MODELS
THE CONCEPT OF TURBULENT VISCOSITY
—p

ou; 0 U Ui\ ——
REYNOLDS EQUATIONS: u; — = (— 6l-j +v (— + —) - u{u;)
dx; 0x;\ p ;

__ om; 0w\ 2
_uiuj=vT a—x]+a—xl __k6ij

18
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TURBULENCE MODELS S

CLASIFICATION

MODEL CHARACTERISTICS

ZERO —EQUATION MODELS |Algebraic relationships model the eddy viscosity

“HALF-EQUATION” MODELS |An ordinary differential equation is required to be solved

ONE EQUATION MODELS |One partial differential equation is used in the model

TWO EQUATION MODELS |Two partial differential equations are used in the model

TURBULENCE MODELS R
ZERO EQUATION MODELS

- CONSTANT TURBULENT VISCOSITY. The original Boussinesq model falls in this

category: vy= gAhu,
v, _I_I/

- Axisymmetricjet vy = 0.013V,yd, —"—-—_l_l\
do

- Central region of the flow in a pipe

VT_C f
2 Re g
UD
C = 0.07 ; RQZT

19



TURBULENCE MODELS

ZERO EQUATION MODELS

PLANE AMBIENT FLUID AT REST
TYPE OF MIXING AXISYMMETRIC | RADIALJET PLANE
FLOW WAKE
LAYER PLANE JET JET (FAN)

C 0.014 0.011 0.019 0.026
TURBULENCE MODELS
ZERO EQUATION MODELS
- MIXING LENGTH MODELS

- The turbulent viscosity is computed from:
ou
=2 |—
vr ay
MIXING LENGTH IN FREE SHEAR FLOWS:
DLANE AMBIENT FLUID AT REST
TYPE OF
MIXING PLANE WAKE
FLOW AXISYMMETRIC | RADIAL JET
LAYER PLANE JET JET (FAN)
é 0.7 0.9 0.75 0.125 0.16

TURBULENT VISCOSITY AVERAGED ALONG THE VERTICAL.

For example, for a slender open channel flow:

Vr= gKu*h

PRANDTL'S MODEL FOR FREE-SHEAR LAYERS

vr= C8|Upmax — Unn|

REY

LDS A

Pro.
\WVE

\LDO

19/12/2017
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EQUATIONS AND TURBULENCE MODELS

Pro!
A\ VER AC

ALDO
-ED N

AMBURRING

\WIER-STOKES

EQUATIONS AND TURBULENCE MODELS

&: boundary layer thickness

20



TURBULENCE MODELS
ZERO EQUATION MODELS

- MIXING LENGTH MODELS

BOUNDARY LAYER WITH SOLID FRONTIERS:

PIPES (Nikuradse): Y

NEAR THE WALL (van Driest):

l=y[1—exp(—

von KARMAN SIMILARITY RULE:

TURBULENCE MODELS

ZERO EQUATION MODELS
- MIXING LENGTH MODELS

TWO LAYER FLOWS:

CEBECI and SMITH (1974)

ou; u;
L= ]2 /_l_‘
Vi l Ox] ij

BALDWIN and LOMAX (1978)

_ 1/0u; OJu;
v = B Wy oy = i(a—aﬁ - 0_x]>
] L

1yu,
ol )

L 014 008(1
==0, .

R)Z ~0.06 (1~ %)

19/12/2017

1yu,
A v

There is a similarity of the turbulence fluctuations in
all the flow domain . It works well near the wall. Fails
in jets and wakes (In inflexion points [ — o)

Ue
FLOW
OUTER LAYER

INNER LAYER
B ]

/ INTERMITENCY FUNCTION

V1o = 00168U36*FK

WAKE FUNCTION

vro = 0.0269F,,; Fy

21
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TURBULENCE MODELS e

“HALF-EQUATION” MODELS

The model receives its name because it does not involve partial differential
equations. It includes one ordinary differential equation.

Johnson and King (1985) developed the model to solve boundary layer flows
in strong adverse pressure gradients. In this model, the advection effects are
important, whereas turbulent transport and diffusion effects are much less

important.
vr = vroll — exp(vri/vro)]

VTxym 1yu,
v = [2 X220 I=y|l—exp|—= , A=15
Ti Ky y p A v

vro = 0.0269F,x Fxo(X)  m: maximum value of Ty
FUNCTION THAT IS ADJUSTED AT _ dty, 3/2
EACH LOCATION x SUCH THAT: U= = = by2 (w/‘[meq - \/Tm) — Cair 0 76 [ —Jo)]

o = __xym_ i

Tm ou/0yVp, Tmfora(x) =1 DISSIPATION LENGTH SCALE L,, = Ky ; L, = 0.098

TURBULENCE MODELS S

TRANSPORT EQUATION OF A PROPERTY

Before presenting the one- and two-equation models, it is worth to remember the form
of the equations that describe the transport of a property by the flow. Let’s call T the
transported property (it can be scalar or vector). The variation of I'is given by:

ar o 6F i
dt  0x; axl

In vectorial notation:

ar
StV VI =V- (VD) +S

where D is a diffusion coefficient and S is a source or sink term.

22
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TURBULENCE MODELS P
TRANSPORT EQUATION OF A PROPERTY

or
S+ V V=7 (DVD) +5$

Examples:
If I" is the mass of a conservative (S = 0) substance dissolved in the fluid, we have the mass diffusion
equation (D constant):

dc o
—+V-Vc=DV?c

Jt
If T is the momentum (I" = pV)
v - -
—+V =——l7p+v|7 V+g
+V- |7l7/=@2V — — |7p + g
= v coefficient of = —%Vp + g : source of momentum

momentum diffusion

TURBULENCE MODELS T AT AR TS

ONE EQUATION MODELS

In the one equation models a transport equation is introduced, with an algebraic relation for the turbulent
length scale L.

TRANSPORT OF THE TURBULENT KINETIC ENERGY k:

_ ok d (1—— 1_ N\ —
”fa_x,- ax] p ]p += 2 wjuiu; — 2vuis;; | — w;u;Sij — 2VSy;Si;
We want to give it the form ar_ o Dar +S g ok _ 0 Dak +S
g at ~ ox\ ox; > Yoy Tox\ oy
MODEL L+ S — 2 Ty ) 2k
: pup Zuu vusu o0 v o,
recalling: o 0%\ 2 e (0T, ) 0
ecalling: u] =vr ox, T om 7 ki N WU;S;j = vr 0% T ox ) 9%,
We named: 2VsSij =€

23
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TU RB U LE N CE M O D E LS I-u_‘jl‘. .\\Iu“:.'%.'\.‘.\.;"‘l"l“\“l.'.\ NCE MODE I;'
ONE EQUATION MODELS
TRANSPORT OF THE TURBULENT KINETIC ENERGY k:

_ 0k 0k <vT >6k <aai aaj>aai
—+ V||t Vvr\s—Ft 5|5 — €

u] G_x} - a (% ax] ax] axi ax]

We have not finished yet. We still need to know v and e.

oy is a coefficient to be tuned with experimental data.

Prof. ALDO TAMBURRING
REYNOLDS AVERAGED NAVIER-STOKE

TURBULENCE MODELS e

MODELING OF THE TURBULENT VISCOSITY :

We had: vy« VL

It seems natural to choose: 7 =k

Thus: vr = CL\/EL (Kolmogorov — Prandtl)

MODELING OF THE TURBULENT DISSIPATION RATE :

We said that the viscous dissipation depends on the dynamics of the large scales:
P3
e~ —
L
k3/2

Thus: e=cp——
D
L

24
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TURBULENCE MODELS SR
ONE EQUATION MODELS

The equation for the transport of the turbulent kinetic energy is:

_ 0k _ ok vr ok N aul+8u] o; k3/2
“faxj_ax- Ok v Ox] YT\ 9x 0x; ) 0x; )

i) J
With Vr = CL\/EL

L is modelled with some algebraiggnodel. For example, for shear layer flows:

y O 09
L =
Y ’ 5 =k
y 0.09
L =0.096 , =>—
0 K

TURBULENCE MODELS

ONE EQUATION MODELS
BRADSHAW’S MODEL (1967, 1973)

https://www.quora.com/What-is-the-significance-of- y-layer

It was developed for 2D boundary layers in which —u'v’/k = a; = constant (= 0.3).

The transport equation for k is transformed in a transport equation for u'v’:

9 (uv' _6 G — _au wr
uax a; ay u'v’ uvMAX u'v' 7

=YWy g ()

Us 0
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TURBULENCE MODELS

ONE EQUATION MODELS

Application of one equation models is restricted mainly to shear-layer
flows because it is difficult to determine experimentally the length scale
distribution in more complex flows.

TURBULENCE MODELS RS

TWO EQUATION MODELS

In the two equation models, another property is transported in addition
to the turbulent kinetic energy, k. The most common models are:

-k—¢
-k — w, where w = k/vp

(There are more, for example, shear stress transport (SST) model)
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TWO EQUATION MODELS: k — €

From dimensional analysis:

A transport equation for the energy dissipation rate ¢ is needed.

TURBULENCE MODELS

TWO EQUATION MODELS: k — € W
TRANSPORT EQUATION FOR €. €= 2vsySy =v,

axl axl
It requires some boring algebra. The steps are the followings:

- Make a Reynolds decomposition of the Navier-Stokes Equation
- Get the equation for the instantaneous fluctuations

- Differentiate it with respect to x;

!

ol it by 2v 2%
- MultlplyltbyZVaxl

- Take time average

- The exact transport equation for € was obtained.

19/12/2017
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TURBULENCE MODELS e

TWO EQUATION MODELS: k — &
TRANSPORT EQUATION FOR €.

The different terms arising in the equation for € are modelled in analogous way as it
was done for the turbulent kinetic energy. Finally, the transport equation for the
energy dissipation rate is:

_ 0e 0k vr oe Lo £ aul 6u] aul g2
Yox, " ox |\op TV )ax| TV \ax, Tax ) ax, T 2%k

TURBULENCE MODELS R
TWO EQUATION MODELS: k — €
THE SYSTEM OF DIFFERENTIAL EQUATIONS THAT SOLVE THE PROBLEM IS:

CONTINUITY ou;
EQUATION: e

2

ou; 0 p ou; du;\ 2
REYNOLDS _ Ou; i j

U—=—-— i+ (v+vp)—+ — = ké;;
EQUATIONS: Tox;  0x; < p Y (vvr) <ax] axi> 3 ”)
k2

TURBULENT _
VICOSITY: VT Ty

TURBULENTKINETIC . Ok _ Ok | /vy ok ou;  0u;\ 0u;
G—==—|(—+v FRRVY [t A ey
ENERGY TRANSPORT: dx; 0xj[\ok axj ax]- 0x; ) 0x;

ENERGY DISsIPATION ~ _ 0 _ Ok | (v de £ (0u;  0n;)\ 0w g’
Uij—= + v +C£1 vr +———- CSZ_
RATE TRANSPORT: Tox;  0xj|\oe ax; k"\ox; " ox; ) ox; k

J
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TURBULENCE MODELS S

TWO EQUATION MODELS: k — &
VALUES OF THE PARAMETERS INVOLVED IN THE SYSTEM OF EQUATIONS

¢, =009 0,=10 0g,=13 Ce1 =144 ¢ =192

These values are, unfortunately, not universal but have to be modified for other
problems such as jets and wakes and recirculating flows (White)

Shoulder of airfoil -
% /- Note Flow
maximum speed outside | oty :‘M :‘{'ﬂ#l};\ﬁn@y
of theboundary layer | / yer isinviscid flow
ot —— Turbulent boundary layer -
R [ P,

region
- —4-Stagnation poine  (shaded)
pressure = Total pressure p,

FIGURE 6-35 https://www.quora.com/What-is-the-significance-of-a-boundary-layer
Three types of free turbulent flow: (a) mixing layer; (b) free jet; (¢) wake of a body.
WHITE. Viscous Fluid Flows

TURBULENCE MODELS SRR

TWO EQUATION MODELS: k — €. BOUNDARY CONDITIONS

Solid Boundaries
1 u U,
ut=-In(yH)+B (B0<y*<100) ut=—, +=?
K U, \Y

In the region 30 < y* < 100, the Reynolds stresses are practically constants and equal to pu?.
Convection and diffusion u’'v’ are negligible = Production = Dissipation :

Boundary condition for k:

k1
u [Cu
Boundary condition for €:
u?
&£=—
Ky

Free surface
Usually turbulent stresses, turbulent fluxes and € are assumed equal to zero = symmetry condition
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TWO EQUATION MODELS: k — €. LOW REYNOLDS NUMBER EFFECTS

19/12/2017

Modifications to the k — £ model presented before have been developed in order to take
into account the effect of low Reynolds numbers. They include new parameters that have

to be calibrated with the experimental data.

TURBULENCE MODELS

TWO EQUATION MODELS: k — @
THE SYSTEM OF DIFFERENTIAL EQUATIONS THAT SOLVE THE PROBLEM IS:

In this model, the turbulent viscosity is given by:

The transport equations for k and w are:

(V_T+ )f’_k
Ok ax]

_Ow Ok |(vr ow w ou; 0u;\ du;
Go— ==\ =+ V)| Tapvrlsr + 50 ) 30— B
J

0x; |\ o¢ ox;  0x;) 0x;

ok ok
uj ax] B ax]

<

<

13 9

a=ﬁ' .8=.80fﬁ' B*=B6f5' o =2, Ow =2,

fg is a function of the mean vorticity and mean shear deformation rate
fg is a function of w and the spatial derivatives of k and w
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Prof. ALDO TAMBURRING

TURBULENCE MODELS
TWO EQUATION MODELS

CONCLUSION

- k — £ : Valid for fully turbulent flows.

Performs poorly for complex flows involving severe pressure gradient, separation,
strong streamline curvature.

- k — w : Works well for wall-bounded and low Reynolds number flows.

Suitable for complex boundary layer flows under adverse pressure gradient and
separation. Can be used for transitional flows.

Turbulence models do not provide any new knowledge on turbulence.
However, they are powerful tools for engineers.

Prof. ALDO TAMBURRING

)5 AVER A
EQUATIONS AND TURBULENCE MODELS

Epicycles on
picycles

Planet

THANKS!!

Questions?
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Prof. ALDO TAMBURRING
REYNOLDS AVERAGED \WIER-STOKES

TURBULENCE MODELS

THE CONCEPT OF TURBULENT VISCOSITY

REYNOLDS EQUATIONS:

0w, 9 (—p ou; 0\ 2
o l——(7296”-+(v+vT)<—l+—]>——k6ij>

uja_x] B Ox] Ox] axi 3
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TURBULENCE MODELS

TURBULENCE MODELS SRR

TWO EQUATION MODELS: k — €
VALUES OF THE PARAMETERS INVOLVED IN THE SYSTEM OF EQUATIONS

¢, =009 0,=10 o0,=13 Cer =144 ¢y =192

These values are, unfortunately, not universal but have to be modified for other
problems such as jets and wakes and recirculating flows (White)

Axisymmetricjets: ¢, = 0.09 — 0.04f , Cer = 1.92 —0.0667f

0.2
— 6 a Umax _ a Umax
AU, \ 0x 0x
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