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SOME PRELIMINARIES
REYNOLD’S EXPERIMENT (1883)

Experimental set-up of Reynold´s experiment, taken from his 

paper from 1883.

Flow pattern of the dye at low velocities. “Direct” motion or laminar 

regime.

Flow pattern of the dye at high velocities. “Sinuous” motion or 

turbulent regime.

Flow pattern of the dye in the “sinuous” motion or turbulent regime 

when illuminated with a sparkling light. Reynolds observed the eddy 

or curly motion of the fluid.

FIGURES FROM REYNOLDS’ PAPER

SOME PRELIMINARIES
Newton’s second law for an incompressible Newtonian fluid in a gravitational field, is 
written as:

Component 𝑥:

𝜌
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
+ 𝜌𝑔𝑥

Component 𝑦:

𝜌
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= −

𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
+ 𝜌𝑔𝑦

Component 𝑧:

𝜌
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
= −

𝜕𝑝

𝜕𝑧
+ 𝜇

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
+ 𝜌𝑔𝑧

Or, in vectorial form:

𝜌
𝜕  𝑣

𝜕𝑡
+  𝑣 ∙ 𝛻  𝑣 = −𝛻𝑝 + 𝜇𝛻2  𝑣 + 𝜌  𝑔
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SOME PRELIMINARIES
Formally, the problem is solved: We have 4 differential equations (with its initial and 
boundary conditions) and 4 unknowns:

Continuity: 

𝛻 ∙  𝑣 = 0
Navier-Stokes equations (3):

𝜌
𝜕  𝑣

𝜕𝑡
+  𝑣 ∙ 𝛻  𝑣 = −𝛻𝑝 + 𝜇𝛻2  𝑣 + 𝜌  𝑔

Unknowns: 𝑝, 𝑢, 𝑣, 𝑤

This set of equations do not have restrictions regarding the flow regime. Formally, they can 
be applied any flow regime: laminar, turbulent or transitional laminar-turbulent.

SOME PRELIMINARIES

The equations of Navier-Stokes are extremely difficult to solve, 
except for some simple particular cases. Although they are valid for 
any flow regime, they are only applied to laminar flows to get 
analytical solutions.

This limitation was not known when Navier (1822) and Stokes 
(1845) published their equations (at that time, laminar and 
turbulent regimes where not identified yet).  
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PRESENCE OF EDDIES IN TURBULENT FLOWS

The existence of eddies in turbulent flows was recognized in the XIX century.   

SOME PRELIMINARIES

VELOCITY MEASUREMENTS IN TURBULENT FLOWS
VELOCITY TIME SERIES (z = 17.33 cm)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140 160

t (seg)

(c
m

/
s)

u(t)

v(t)

w(t)

Record of the three components of the velocity measured at one location in a 

turbulent flow in an open channel

FLOW

SOME PRELIMINARIES
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REYNOLDS’ DECOMPOSITION

𝑢

𝑡

 𝑢

𝑢′

𝑢 =  𝑢 + 𝑢′
𝑣 =  𝑣 + 𝑣′
𝑤 =  𝑤 + 𝑤′
𝑝 =  𝑝 + 𝑝′

𝑽 𝒙, 𝒕 =  𝑽 𝒙 + 𝑽′ 𝒙, 𝒕

AVERAGE 
COMPONENT

INSTANSTANEOUS 
VELOCITY

FLUCTUATING 
COMPONENT

SOME PRELIMINARIES

REYNOLDS’ EQUATIONS

Replacing the decomposed velocities in the continuity equation:

𝜕  𝑢 + 𝑢′

𝜕𝑥
+

𝜕  𝑣 + 𝑣′

𝜕𝑦
+

𝜕  𝑤 + 𝑤′

𝜕𝑧
= 0

Averaging over the turbulence, we get:

𝜕 𝑢

𝜕𝑥
+

𝜕  𝑣

𝜕𝑦
+

𝜕 𝑤

𝜕𝑧
= 0

𝜕𝑢′

𝜕𝑥
+

𝜕𝑣′

𝜕𝑦
+

𝜕𝑤′

𝜕𝑧
= 0

CONTINUITY EQUATION IS SATISFIED 
FOR THE FLUCTUATING COMPONENTS 
OF THE VELOCITIES

CONTINUITY EQUATION IS SATISFIED 
FOR THE AVERAGE COMPONENTS OF 
THE VELOCITIES

SOME PRELIMINARIES
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REYNOLDS’ EQUATIONS

Replacing the decomposed velocities in the 𝑥 component of the Navier-Stokes  equations 
and after some algebra which is detailed in the class notes the following equations is 
obtained:

𝜌  𝑢
𝜕 𝑢

𝜕𝑥
+  𝑣

𝜕 𝑢

𝜕𝑦
+  𝑤

𝜕 𝑢

𝜕𝑧
+

𝜕𝑢′2

𝜕𝑥
+

𝜕𝑢′𝑣′

𝜕𝑦
+

𝜕𝑢′𝑤′

𝜕𝑧
= −

𝜕 𝑝

𝜕𝑥
+ 𝜇𝛻2  𝑢 + 𝜌𝑔𝑥

After obtaining this equation, Reynolds had a bright idea that allowed him to interpret the 

terms arising from the velocity fluctuations:  𝑢′2, 𝑢′𝑣′, 𝑢′𝑤′.

SOME PRELIMINARIES

REYNOLDS’ EQUATIONS
Thus the 𝑥 component of the averaged Navier-Stokes equation becomes:

𝜌
𝑑 𝑢

𝑑𝑡
+

𝜕𝑢′2

𝜕𝑥
+

𝜕𝑢′𝑣′

𝜕𝑦
+

𝜕𝑢′𝑤′

𝜕𝑧
= −

𝜕 𝑝

𝜕𝑥
+ 𝜇𝛻2  𝑢 + 𝜌𝑔𝑥

To give the form of:

𝜌
𝑑 𝑢

𝑑𝑡
=  𝐹𝑉𝑥

𝜌
𝑑 𝑢

𝑑𝑡
+

𝜕𝑢′2

𝜕𝑥
+

𝜕𝑢′𝑣′

𝜕𝑦
+

𝜕𝑢′𝑤′

𝜕𝑧
= −

𝜕 𝑝

𝜕𝑥
+ 𝜇𝛻2  𝑢 + 𝜌𝑔𝑥

𝜌
𝑑 𝑢

𝑑𝑡
= −

𝜕 𝑝

𝜕𝑥
+ 𝜇𝛻2  𝑢 + 𝜌𝑔𝑥 − 𝜌

𝜕𝑢′2

𝜕𝑥
+

𝜕𝑢′𝑣′

𝜕𝑦
+

𝜕𝑢′𝑤′

𝜕𝑧
BRIGHT IDEA!!!

SOME PRELIMINARIES
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REYNOLDS’ EQUATIONS

 𝑭𝑽𝒙 = −
𝝏 𝒑

𝝏𝒙
+ 𝝁𝜵𝟐 𝒖 + 𝝆𝒈𝒙 − 𝝆

𝝏𝒖′𝟐

𝝏𝒙
+

𝝏𝒖′𝒗′

𝝏𝒚
+

𝝏𝒖′𝒘′

𝝏𝒛

FORCES ACTING IN THE 
VOLUME OF FLUID

=
FORCES 
DUE TO 

PRESSURE
+

FORCES 
DUE TO 

VISCOUS 
STRESSES

+
FORCE 
DUE TO 

GRAVITY
+

APARENT FORCES 
ORIGINATED BY THE 

TURBULENCE

APARENT FORCES : 
THEY ARE NOT REALLY FORCES. 

THEY ARE FLUXES OF MOMENTUM DUE TO THE 
TURBULENT FLUCTUATIONS WHICH ARE 

INTERPRETED AS FORCES (REYNOLD’S GREAT IDEA)

SOME PRELIMINARIES

Defining the turbulent or  Reynolds stresses as:

𝜏𝑇𝑥𝑥 = −𝜌𝑢′2 , 𝜏𝑇𝑦𝑥 = −𝜌𝑢′𝑣′ , 𝜏𝑻𝑧𝑥 = −𝜌𝑢′𝑤′

The viscous stresses are:

𝜏𝑉𝑥𝑥 = 2𝜇
𝜕 𝑢

𝜕𝑥
, 𝜏𝑉𝑦𝑥 = 𝜇

𝜕 𝑢

𝜕𝑦
+

𝜕  𝑣

𝜕𝑥
, 𝜏𝑉𝑧𝑥 = 𝜇

𝜕 𝑢

𝜕𝑧
+

𝜕 𝑤

𝜕𝑥

The total stresses are:

𝑇𝑥𝑥 = 𝜏𝑉𝑥𝑥 + 𝜏𝑇𝑥𝑥 , 𝑇𝑦𝑥 = 𝜏𝑉𝑦𝑥 + 𝜏𝑇𝑦𝑥 , 𝑇𝑧𝑥 = 𝜏𝑉𝑧𝑥 + 𝜏𝑇𝑧𝑥

REYNOLDS’ EQUATIONS
SOME PRELIMINARIES
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𝑥 component of the momentum equation:

𝜌  𝑢
𝜕 𝑢

𝜕𝑥
+  𝑣

𝜕 𝑢

𝜕𝑦
+  𝑤

𝜕 𝑢

𝜕𝑧
= −

𝜕 𝑝

𝜕𝑥
+

𝜕𝑇𝑥𝑥
𝜕𝑥

+
𝜕𝑇𝑦𝑥

𝜕𝑦
+

𝜕𝑇𝑧𝑥
𝜕𝑧

+ 𝜌𝑔𝑥

In the same way:

𝑦 component of the momentum equation:

𝜌  𝑢
𝜕  𝑣

𝜕𝑥
+  𝑣

𝜕  𝑣

𝜕𝑦
+  𝑤

𝜕  𝑣

𝜕𝑧
= −

𝜕 𝑝

𝜕𝑦
+

𝜕𝑇𝑥𝑦

𝜕𝑥
+

𝜕𝑇𝑦𝑦

𝜕𝑦
+

𝜕𝑇𝑧𝑦

𝜕𝑧
+ 𝜌𝑔𝑦

𝑧 component of the momentum equation:

𝜌  𝑢
𝜕 𝑤

𝜕𝑥
+  𝑣

𝜕 𝑤

𝜕𝑦
+  𝑤

𝜕 𝑤

𝜕𝑧
= −

𝜕 𝑝

𝜕𝑧
+

𝜕𝑇𝑥𝑧
𝜕𝑥

+
𝜕𝑇𝑦𝑧

𝜕𝑦
+

𝜕𝑇𝑧𝑧
𝜕𝑧

+ 𝜌𝑔𝑧

THESE ARE THE 
REYNOLDS EQUATIONS 
FOR THE TURBULENT 
FLOW PUBLISHED IN 

1895

In general:

𝑇𝑖𝑗 = 𝜏𝑉𝑖𝑗 + 𝜏𝑇𝑖𝑗

𝜏𝑉𝑖𝑗 = 𝜇
𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖

𝜏𝑇𝑖𝑗 = −𝜌𝑢𝑖
′𝑢𝑗

′

REYNOLDS’ EQUATIONS
SOME PRELIMINARIES

THE PROBLEM OF TURBULENCE CLOSURE

Although the Reynolds equations are an important step in the study of the turbulence, 
they do not solve the problem.

We have 4 differential equations: Continuity (1) and Reynolds’ equations (3)

We have 10 unknowns:  𝑢,  𝑣,  𝑤,  𝑝, 𝑢′2, 𝑣′2, 𝑤′2, 𝑢′𝑣′ , 𝑢′𝑤′ , 𝑣′𝑤′

We need relationships for the Reynolds stresses:  −𝜌𝑢𝑖
′𝑢𝑗

′

As there is not a theory based only on the first principles of the physics, all the available 
models necessarily require some experimental data.

SOME PRELIMINARIES
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BOUSSINESQ’S CLOSURE OF THE TURBULENCE: EDDY VISCOSITY

Boussinesq proposed his model in 1877  (almost 20 years before that the Reynolds’ 
equations were published). 

The viscous stresses are given by:

𝜏𝑉𝑖𝑗 = 𝜇
𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖

In analogy to the viscous stresses, Boussinesq proposed an eddy viscosity coefficient 𝜀
such that 

𝜏𝑇𝑖𝑗 = 𝜀
𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖

SOME PRELIMINARIES

𝜏𝑉𝑖𝑗 = 𝜇
𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖
, 𝜏𝑇𝑖𝑗 = 𝜀

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖

There is a strong difference between 𝜇 and 𝜀:

- The dynamic viscosity 𝜇 is a property of the fluid 
- The eddy viscosity 𝜀 is a property of the flow
- In the turbulent region of the flow 𝜇 ≪ 𝜀

For open channel flows, Boussinesq proposed: 

𝜀 = 𝜌𝑔𝐴ℎ𝑢0

COEFFICIENT THAT DEPENDS 
ON THE WALL ROUGHNESS

VELOCITY AT THE WALL

FLOW DEPTH

BOUSSINESQ’S CLOSURE OF THE TURBULENCE: EDDY VISCOSITY
SOME PRELIMINARIES
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According to Boussinesq, the velocity distribution in a 2-D uniform, permanent open-
channel flow is: 

 𝑢 = 𝑢0 +
sin 𝜃

𝐴ℎ𝑢0
𝐻𝑦 −

1

2
𝑦2

𝒖𝟎

Boussinesq’s result does not 
satisfy the non-slip condition!!

BOUSSINESQ’S CLOSURE OF THE TURBULENCE: EDDY VISCOSITY
SOME PRELIMINARIES

PRANDTL’S CLOSURE OF THE TURBULENCE: MIXING LENGTH

Ludwig Prandtl (1875-1953) is among the greatest researchers in fluid mechanics of the 
XX century. His most important contribution is his boundary layer theory (1904), by which 
he was nominated to the Nobel prize in 1928 (he did not get it).

In his closure of the turbulence 
problem, Prandtl made an analogy with 
the kinetic theory of gases, according 
to which the gas molecules can travel, 
preserving its momentum, until they 
collides with other. 

The average length that the molecules travel 
before colliding is named “free mean path”

SOME PRELIMINARIES
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The idea behind the mixing length:

 𝑢

𝑦

𝑦 + 𝑙

 𝑢 𝑦

 𝑢 𝑦 + 𝑙

 𝑢 𝑦 𝑢′ 𝑦

𝑣′ 𝑦

A

B

In analogy to the kinetic theory 
of gases, according to Prandtl, 
parcels of fluid are displaced 
without loosing their identity
(i.e., they preserve their 
momentum) due to the 
turbulent fluctuations.

The average distance travelled 
by the parcels of fluids is 
denominated mixing length (𝑙)

PRANDTL’S CLOSURE OF THE TURBULENCE: MIXING LENGTH
SOME PRELIMINARIES

A parcel of fluid, initially in A (located at 
𝑦), due to the fluctuation of the vertical 
velocity 𝑣′, moves to B (located at 𝑦 + 𝑙), 
preserving its initial momentum 𝜌 𝑢(𝑦), 
which is imposed at the new location.
Thus, the new velocity at 𝑦 + 𝑙 is  𝑢(𝑦).

At 𝑦 + 𝑙 , the instantaneous change from 
 𝑢(𝑦 + 𝑙) to   𝑢(𝑦) corresponds to the 
velocity fluctuation 𝑢′(𝑦).

𝑢′ =  𝑢 𝑦 −  𝑢 𝑦 + 𝑙

 𝑢

𝑦

𝑦 + 𝑙

 𝑢 𝑦

 𝑢 𝑦 + 𝑙

 𝑢 𝑦 𝑢′ 𝑦

𝑣′ 𝑦

A

B

PRANDTL’S CLOSURE OF THE TURBULENCE: MIXING LENGTH
SOME PRELIMINARIES
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𝑢′ =  𝑢 𝑦 −  𝑢 𝑦 + 𝑙

Expanding in Taylor’s series: 

𝑢′ =  𝑢 𝑦 −  𝑢 𝑦 +
𝜕 𝑢

𝜕𝑦
𝑙 + ⋯ → 𝑢′ = −𝑙

𝜕 𝑢

𝜕𝑦

Experimental evidence: 𝑢′ ~ 𝑣′

Thus :

𝑣′~𝑙
𝜕 𝑢

𝜕𝑦

𝜏𝑇𝑥𝑦 = −𝜌𝑢′𝑣′ → 𝝉𝑻𝒙𝒚 = 𝝆𝒍𝟐
𝝏 𝒖

𝝏𝒚

𝟐

𝑢′ 𝑦

𝑣′ 𝑦

B

A

𝑣′ > 0 , 𝑢′ < 0 → 𝑢′𝑣′ < 0

𝑣′ < 0 , 𝑢′ > 0 → 𝑢′𝑣′ < 0

We cannot go further in the analysis. We need an expression for the mixing length 𝒍

PRANDTL’S CLOSURE OF THE TURBULENCE: MIXING LENGTH
SOME PRELIMINARIES

The models before presented have serious limitations in their

application and most of the time they cannot applied to

conditions different to those that they were developed.

However, they are the base of more general models.

BOUSSINESQ AND PRANDTL MODELS
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Before presenting closure models, it seems natural to ask: Why do not

solve numerically the continuity and Navier-Stokes equations?

𝛻 ∙  𝑣 = 0

𝜌
𝜕  𝑣

𝜕𝑡
+  𝑣 ∙ 𝛻  𝑣 = −𝛻𝑝 + 𝜇𝛻2  𝑣 + 𝜌  𝑔

Numerical solution of the above equations for turbulent flows is a valid 
strategy, but it requires a discretization smaller than the smallest eddy of 
the turbulent flow.

What is the smallest scale associated to the turbulence?

SCALES OF TURBULENCE

Turbulent flows convey eddies of many sizes. The largest, obviously, scales with the

dimension of the flow domain. There is a continuum of eddy sizes from the largest to the

smallest, which dissipates the energy due to the fluid viscosity.

KOLMOGOROV’S SCALES

LARGEST EDDY SMALLEST EDDY

PRODUCTION 
OF ENERGY

DISIPATION OF ENERGY 
BY VISCOUS FRICTION

𝓛,𝓤,𝓣 𝜼𝑲, 𝒗𝑲, 𝝉𝑲ESCALES :

CASCADE OF ENERGY
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Kolmogorov (1941) proposed that the scales of the smallest eddy depends on the

kinematic viscosity () and the energy dissipation rate per unit mass (𝜀).

Dimensions:  = L2T−1 , 𝜀 = L2T−3 . Using dimensional analysis is easy to get:

KOLMOGOROV’S SCALES

𝜼𝑲 =
𝟑

𝜺

 𝟏 𝟒

𝝉𝑲 =


𝜺

 𝟏 𝟐

𝒗𝑲 = 𝜺  𝟏 𝟒

LENGTH SCALE:

TIME SCALE:

VELOCITY SCALE:

EDDY SIZE

TURNOVER TIME

EDDY VELOCITY

𝐏𝐑𝐎𝐃𝐔𝐂𝐓𝐈𝐎𝐍 𝑷 = 𝐃𝐈𝐒𝐈𝐏𝐀𝐓𝐈𝐎𝐍 (𝜺)

𝑷~
𝓤𝟐

𝓣
=

𝓤𝟑

𝓛

KOLMOGOROV’S SCALES

LARGEST EDDY SMALLEST EDDY

𝑷 𝜺

CASCADE OF ENERGY

=

𝜺~
𝓤𝟑

𝓛

VISCOUS DISSIPATION DEPENDS ON 
THE DYNAMICS OF THE LARGE SCALES 
(DOES NOT INVOLVES VISCOSITY)
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𝜺~
𝓤𝟑

𝓛

KOLMOGOROV’S SCALES

𝜼𝑲 =
𝟑

𝜺

 𝟏 𝟒

~
𝟑

𝓤𝟑𝓛𝟑

 𝟏 𝟒

𝓛 → 𝜼𝑲 = 𝑹𝒆  −𝟑 𝟒𝓛

𝝉𝑲 =


𝜺

 𝟏 𝟐

𝒗𝑲 = 𝜺  𝟏 𝟒

LENGTH SCALE:

TIME SCALE:

VELOCITY SCALE:

→ 𝝉𝑲 = 𝑹𝒆  −𝟏 𝟐𝓣

→ 𝒗𝑲 = 𝑹𝒆  −𝟏 𝟒𝓤

KOLMOGOROV’S SCALES
To have an idea of the magnitude of the scales, let’s consider the flow in an open channel.

Water depth: 0.3 m, channel width: 0.5 m, slope: 0.0001, Manning’s n: 0.014 → 𝑉 ~ 0.2 m/s

Estimating ℒ ~ 0.3 m, 𝒰 ~ 𝑉 ~ 0.2 m/s,  ~ 10−6 m2/s → 𝑅𝑒 ~ 6 × 104

𝜂𝐾 = 𝑅𝑒  −3 4ℒ ~ 0.08 mm 𝜏𝐾 = 𝑅𝑒  −1 2𝒯 ~ 0.006 s

A numerical solution of the Navier-Stokes equations (Direct Numerical Simulation) requires a

discretization such that:

∆𝑥 ~ ∆𝑦 ~ ∆𝑦 <
𝜂𝐾

2
= 0.04 mm , ∆𝑡 <

𝜏𝐾
2

= 0.003 s

DNS IS NOT PRACTICAL FOR ENGINEERING APPLICATIONS YET
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Continuity and Reynolds equations are written in a compact form using a index notation:

REYNOLDS’ EQUATION IN INDEX 
NOTATION (EINSTEIN CONVENTION)

𝜕 𝑢𝑖

𝜕𝑥𝑖
= 0

 𝑢𝑗

𝜕 𝑢𝑖

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

𝑇𝑖𝑗

𝜌

𝑇𝑖𝑗 = −  𝑝𝛿𝑖𝑗 + 2𝜇𝑆𝑖𝑗 − 𝜌𝑢𝑖
′𝑢𝑗

′ 𝑆𝑖𝑗 =
1

2

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖

CONTINUITY

MOMENTUM (REYNOLDS)  EQUATIONS

The equation for the instantaneous kinetic energy is obtained making: 𝑁 − 𝑆 𝑒𝑞. ∙ 𝑉

Making the Reynolds’ decomposition of the kinetic energy equation and taking the average, the equation

for the mean kinetic energy and turbulent kinetic energy are obtained:

KINETIC ENERGY EQUATION

𝜌 𝑢𝑗

𝜕

𝜕𝑥𝑗

1

2
 𝑢𝑖  𝑢𝑖 =

𝜕

𝜕𝑥𝑗
𝑇𝑖𝑗  𝑢𝑖 − 𝑇𝑖𝑗𝑆𝑖𝑗MEAN KINETIC ENERGY 

 𝑢𝑗

𝜕

𝜕𝑥𝑗

1

2
 𝑢𝑖  𝑢𝑖 =

𝜕

𝜕𝑥𝑗
−

𝑝

𝜌
 𝑢𝑗 + 2 𝑢𝑖𝑆𝑖𝑗 − 𝑢𝑖

′𝑢𝑗
′  𝑢𝑖 − 2𝑆𝑖𝑗𝑆𝑖𝑗 + 𝑢𝑖

′𝑢𝑗
′𝑆𝑖𝑗

RATE OF CHANGE OF THE KINETIC 
ENERGY OF THE MEAN FLOW

PRESSURE 
WORK

TRANSPORT OF THE KINETIC 
ENERGY OF THE MEAN FLOW BY 

REYNOLDS STRESSES

TRANSPORT OF THE KINETIC 
ENERGY OF THE MEAN FLOW BY 

VISCOUS STRESSES

VISCOUS 
DISSIPATION

PRODUCTION OF 
TURBULENT KINETIC 

ENERGY

IN MOST FLOWS THESE VISCOUS TERMS ARE NEGLEGIBLE
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TURBULENT KINETIC ENERGY

TURBULENT KINETIC ENERGY 

 𝑢𝑗

𝜕

𝜕𝑥𝑗

1

2
𝑢𝑖

′𝑢𝑖
′ = −

𝜕

𝜕𝑥𝑗

1

𝜌
𝑢𝑗

′𝑝′ +
1

2
𝑢𝑖

′𝑢𝑖
′𝑢𝑗

′ − 2𝑢𝑖
′𝑠𝑖𝑗 − 𝑢𝑖

′𝑢𝑗
′𝑆𝑖𝑗 − 2𝑠𝑖𝑗𝑠𝑖𝑗

𝑠𝑖𝑗 =
1

2

𝜕𝑢𝑖
′

𝜕𝑥𝑗
+

𝜕𝑢𝑗
′

𝜕𝑥𝑖

RATE OF CHANGE OF THE 
TURBULENT KINETIC ENERGY

PRESSURE 
WORK TRANSPORT OF 

TURBULENT KINETIC 
ENERGY BY VELOCITY 

FLUCTUATIONS

TRANSPORT OF 
TURBULENT KINETIC 
ENERGY BY VISCOUS 

EFFECTS

PRODUCTION OF 
TURBULENT KINETIC 

ENERGY
𝜀

VISCOUS 
DISSIPATION

DEFORMATION WORK
(MOST IMPORTANT TERMS)

𝑘 ≡
1

2
𝑢𝑖

′𝑢𝑖
′ =

𝑢′2 + 𝑣′2 + 𝑤′2

2

Turbulence modelling has been compared with the model of epicycles and deferents used

in astronomy from ancient Greeks until the middle ages to explain the retrograde motion

of the planets. Astronomers were constantly adding epicycles over epicycles to adjust the

motions to new data.

TURBULENCE MODELS

TURBULENCE MODELLING DOES NOT CONTRIBUTE WITH NEW 

KNOWLEDGEMENT OF THE PHYSICS OF TURBULENCE



19/12/2017

18

In general, the goal of all the models is to find the eddy viscosity that will permit to 

compute the Reynolds stresses −𝜌𝑢𝑖
′𝑢𝑗

′.

The concept of turbulent viscosity (or eddy viscosity) is the basis of all the models.

𝑇: (kinematic) eddy viscosity [L2T-1]

𝑇 ∝  𝑉𝐿

TURBULENCE MODELS

CHARACTERISTIC 
VELOCITY SCALE

CHARACTERISTIC 
LENGHT SCALE

OF THE LARGE SCALE MOTION

THE CONCEPT OF TURBULENT VISCOSITY

TURBULENCE MODELS

 𝑢𝑗

𝜕 𝑢𝑖

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

−  𝑝

𝜌
𝛿𝑖𝑗 + 

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖
− 𝑢𝑖

′𝑢𝑗
′

−𝑢𝑖
′𝑢𝑗

′ = 𝑇

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖
−

2

3
𝑘𝛿𝑖𝑗

REYNOLDS EQUATIONS:
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CLASIFICATION

TURBULENCE MODELS

MODEL CHARACTERISTICS

ZERO –EQUATION MODELS Algebraic relationships model the eddy viscosity

“HALF-EQUATION” MODELS An ordinary differential equation is required to be solved 

ONE EQUATION MODELS One partial differential equation is used in the model

TWO EQUATION MODELS Two partial differential equations are used in the model

ZERO EQUATION MODELS

- CONSTANT TURBULENT VISCOSITY. The original Boussinesq model falls in this 

category: 𝑇= 𝑔𝐴ℎ𝑢0

- Axisymmetric jet    𝑇 = 0.013𝑉0𝑑0

- Central region of the flow in a pipe 

𝑇


=

𝐶

2
𝑅𝑒

𝑓

8

𝐶 ≈ 0.07 ; 𝑅𝑒 =
𝑈𝐷



TURBULENCE MODELS
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ZERO EQUATION MODELS

- TURBULENT VISCOSITY AVERAGED ALONG THE VERTICAL. 

- For example, for a slender open channel flow: 

𝑇=
1

6
𝑢∗ℎ

TURBULENCE MODELS

- PRANDTL’S MODEL FOR FREE-SHEAR LAYERS

𝑇= 𝐶𝛿 𝑈𝑚𝑎𝑥 − 𝑈𝑀𝐼𝑁

TYPE OF 

FLOW

PLANE 

MIXING 

LAYER

AMBIENT FLUID AT REST
PLANE 

WAKEPLANE JET
AXISYMMETRIC 

JET

RADIAL JET 

(FAN)

𝐶 0.01 0.014 0.011 0.019 0.026

ZERO EQUATION MODELS

- MIXING LENGTH MODELS 

- The turbulent viscosity is computed from:

𝑇 = 𝑙2
𝜕 𝑢

𝜕𝑦

TURBULENCE MODELS

TYPE OF 

FLOW

PLANE 

MIXING 

LAYER

AMBIENT FLUID AT REST

PLANE WAKE
PLANE JET

AXISYMMETRIC 

JET

RADIAL JET 

(FAN)

𝑙

𝛿
0.7 0.9 0.75 0.125 0.16

𝛿: boundary layer thickness

MIXING LENGTH IN FREE SHEAR FLOWS:
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ZERO EQUATION MODELS

- MIXING LENGTH MODELS 

TURBULENCE MODELS

BOUNDARY LAYER WITH SOLID FRONTIERS:

PIPES (Nikuradse):
𝑙

𝑅
= 0.14 − 0.08 1 −

𝑦

𝑅

2

− 0.06 1 −
𝑦

𝑅

4

NEAR THE WALL (van Driest): 𝑙 = 𝑦 1 − exp −
1

𝐴

𝑦𝑢∗


, 𝐴 = 26

von KÁRMÁN SIMILARITY RULE: 𝑙 =

𝑑 𝑢
𝑑𝑦

𝑑2  𝑢
𝑑𝑦2

There is a similarity of the turbulence fluctuations in 
all the flow domain . It works well near the wall. Fails 
in jets and wakes (In inflexion points 𝑙 → ∞) 

ZERO EQUATION MODELS
- MIXING LENGTH MODELS 

TURBULENCE MODELS

TWO LAYER FLOWS:

CEBECI and SMITH (1974)

𝑙 = 𝑦 1 − exp −
1

𝐴

𝑦𝑢∗


, 𝐴 = 26

𝑇𝑖 = 𝑙2
𝜕 𝑢𝑖

𝜕𝑥𝑗

 𝑢𝑖

𝜕𝑥𝑗
𝑇0 = 0.0168𝑈𝑒𝛿

∗𝐹𝐾

INNER LAYER

OUTER LAYER

𝑇𝑖

𝑇0
FLOW

𝑈𝑒

INTERMITENCY FUNCTION

BALDWIN and LOMAX (1978)

𝑇𝑖 = 𝑙2 2𝑊𝑖𝑗𝑊𝑖𝑗 𝑊𝑖𝑗 =
1

2

𝜕 𝑢𝑖

𝜕𝑥𝑗
−

𝜕 𝑢𝑗

𝜕𝑥𝑖

𝑇0 = 0.0269𝐹𝑤𝑘𝐹𝐾

WAKE FUNCTION
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“HALF-EQUATION” MODELS
The model receives its name because it does not involve partial differential 

equations. It includes one ordinary differential equation.

Johnson and King (1985) developed the model to solve boundary layer flows 

in strong adverse pressure gradients. In this model, the advection effects are 

important, whereas turbulent transport and diffusion effects are much less 

important.

TURBULENCE MODELS

𝑇 = 𝑇0 1 − exp  𝑇𝑖 𝑇0

𝑇𝑖 = 𝑙2
𝜏𝑥𝑦𝑚

𝑦
𝑙 = 𝑦 1 − exp −

1

𝐴

𝑦𝑢∗


, 𝐴 = 15

𝑇0 = 0.0269𝐹𝑤𝑘𝐹𝐾𝜎(𝑥)

FUNCTION THAT IS ADJUSTED AT 
EACH LOCATION 𝑥 SUCH THAT:

𝑇𝑚 = −
𝜏𝑥𝑦𝑚

 𝜕 𝑢 𝜕𝑦𝑚

 𝑢𝑚

𝑑𝜏𝑚
𝑑𝑥

= 𝑏12 𝜏𝑚𝑒𝑞 − 𝜏𝑚
𝜏𝑚
𝐿𝑚

− 𝐶𝑑𝑖𝑓

𝜏𝑚
 3 2

0.7𝛿 − 𝑦𝑚
1 − 𝜎(𝑥)

𝑚: maximum value of 𝜏𝑥𝑦

𝜏𝑚 for 𝜎 𝑥 = 1 DISSIPATION LENGTH SCALE 𝐿𝑚 = 𝑦 ; 𝐿𝑚 = 0.09δ

TRANSPORT EQUATION OF A PROPERTY
Before presenting the one- and two-equation models, it is worth to remember the form 

of the equations that describe the transport of a property by the flow. Let’s call  the 

transported property (it can be scalar or vector). The variation of  is given by:

𝑑

𝑑𝑡
=

𝜕

𝜕𝑥𝑖
𝐷

𝜕

𝜕𝑥𝑖
+ 𝑆

In vectorial notation:

𝜕

𝜕𝑡
+ 𝑉 ∙ 𝛻 = 𝛻 ∙ 𝐷𝛻 + 𝑆

where 𝐷 is a diffusion coefficient and 𝑆 is a source or sink term.

TURBULENCE MODELS
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TURBULENCE MODELS

TRANSPORT EQUATION OF A PROPERTY
𝜕

𝜕𝑡
+ 𝑉 ∙ 𝛻 = 𝛻 ∙ 𝐷𝛻 + 𝑆

Examples:

If  is the mass of a conservative (𝑆 = 0) substance dissolved in the fluid, we have the mass diffusion 

equation (𝐷 constant):

𝜕𝑐

𝜕𝑡
+ 𝑉 ∙ 𝛻𝑐 = 𝐷𝛻2𝑐

If  is the momentum ( = 𝜌𝑉)

𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ 𝛻𝑉 = −

1

𝜌
𝛻𝑝 + 𝛻2𝑉 +  𝑔

𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ 𝛻𝑉 = 𝛻2𝑉 −

1

𝜌
𝛻𝑝 +  𝑔

𝐷 =  coefficient of 
momentum diffusion 

𝑆 = −
1

𝜌
𝛻𝑝 +  𝑔 : source of momentum 

ONE EQUATION MODELS
In the one equation models a transport equation is introduced, with an algebraic relation for the turbulent 

length scale 𝐿.

TRANSPORT OF THE TURBULENT KINETIC ENERGY 𝒌:

TURBULENCE MODELS

 𝑢𝑗

𝜕𝑘

𝜕𝑥𝑗
= −

𝜕

𝜕𝑥𝑗

1

𝜌
𝑢𝑗

′𝑝′ +
1

2
𝑢𝑖

′𝑢𝑖
′𝑢𝑗

′ − 2𝑢𝑖
′𝑠𝑖𝑗 − 𝑢𝑖

′𝑢𝑗
′𝑆𝑖𝑗 − 2𝑠𝑖𝑗𝑠𝑖𝑗

We want to give it the form
𝑑

𝑑𝑡
=

𝜕

𝜕𝑥𝑖
𝐷

𝜕

𝜕𝑥𝑖
+ 𝑆 →  𝑢𝑗

𝜕𝑘

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
𝐷

𝜕𝑘

𝜕𝑥𝑗
+ 𝑆

MODEL: −
1

𝜌
𝑢𝑗

′𝑝′ +
1

2
𝑢𝑖

′𝑢𝑖
′𝑢𝑗

′ − 2𝑢𝑖
′𝑠𝑖𝑗 =

𝑇

𝜎𝑘
+ 

𝜕𝑘

𝜕𝑥𝑗

−𝑢𝑖
′𝑢𝑗

′ = 𝑇

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖
−

2

3
𝑘𝛿𝑖𝑗 → − 𝑢𝑖

′𝑢𝑗
′𝑆𝑖𝑗 = 𝑇

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖

𝜕 𝑢𝑖

𝜕𝑥𝑗
Recalling:

We named: 2𝑠𝑖𝑗𝑠𝑖𝑗 = 𝜀
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ONE EQUATION MODELS
TRANSPORT OF THE TURBULENT KINETIC ENERGY 𝒌:

TURBULENCE MODELS

 𝑢𝑗

𝜕𝑘

𝜕𝑥𝑗
=

𝜕𝑘

𝜕𝑥𝑗

𝑇

𝜎𝑘
+ 

𝜕𝑘

𝜕𝑥𝑗
+ 𝑇

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖

𝜕 𝑢𝑖

𝜕𝑥𝑗
− 𝜀

We have not finished yet. We still need to know 𝑇 and 𝜀.

𝜎𝑘 is a coefficient to be tuned with experimental data.

MODELING OF THE TURBULENT VISCOSITY :

TURBULENCE MODELS

We had: 𝑇 ∝  𝑉𝐿

It seems natural to choose:  𝑉 = 𝑘

Thus: 𝑻 = 𝒄𝝁
′ 𝒌𝑳 (Kolmogorov – Prandtl)

MODELING OF THE TURBULENT DISSIPATION RATE :

We said that the viscous dissipation depends on the dynamics of the large scales:

𝜀~
 𝑉3

𝐿

Thus: 𝜺 = 𝒄𝑫

𝒌  𝟑 𝟐

𝑳
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ONE EQUATION MODELS
The equation for the transport of the turbulent kinetic energy is:

TURBULENCE MODELS

 𝑢𝑗

𝜕𝑘

𝜕𝑥𝑗
=

𝜕𝑘

𝜕𝑥𝑗

𝑇

𝜎𝑘
+ 

𝜕𝑘

𝜕𝑥𝑗
+ 𝑇

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖

𝜕 𝑢𝑖

𝜕𝑥𝑗
− 𝑐𝐷

𝑘  3 2

𝐿

With 𝑇 = 𝑐𝜇
′ 𝑘𝐿

𝐿 is modelled with some algebraic model. For example, for shear layer flows:

𝐿 = 𝑦 ,
𝑦

𝛿
≤

0.09



𝐿 = 0.09𝛿 ,
𝑦

𝛿
>

0.09



ONE EQUATION MODELS
BRADSHAW’S MODEL (1967, 1973)

It was developed for 2D boundary layers in which  −𝑢′𝑣′ 𝑘 = 𝑎1 ≈ constant (≈ 0.3). 

TURBULENCE MODELS

The transport equation for 𝑘 is transformed in a transport equation for 𝑢′𝑣′:

 𝑢
𝜕

𝜕𝑥

𝑢′𝑣′

𝑎1
+  𝑣

𝜕

𝜕𝑦

𝑢′𝑣′

𝑎1
= −

𝜕

𝜕𝑦
𝐺𝑢′𝑣′ 𝑢′𝑣′

𝑀𝐴𝑋 − 𝑢′𝑣′
𝜕 𝑢

𝜕𝑦
−

𝑢′𝑣′  3 2

𝐿

𝐺 =
𝑢′𝑣′

𝑀𝐴𝑋

𝑈∞
𝑓1

𝑦

𝛿
,

𝐿

𝛿
= 𝑓2

𝑦

𝛿

https://www.quora.com/What-is-the-significance-of-a-boundary-layer
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ONE EQUATION MODELS

Application of one equation models is restricted mainly to shear-layer 

flows because it is difficult to determine experimentally the length scale 

distribution in more complex flows.

TURBULENCE MODELS

TWO EQUATION MODELS

In the two equation models, another property is transported in addition 

to the turbulent kinetic energy, 𝑘. The most common models are:

- 𝑘 − 𝜀

- 𝑘 − ω, where 𝜔 =  𝑘 𝑇

(There are more, for example, shear stress transport (SST) model)

TURBULENCE MODELS
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TWO EQUATION MODELS: 𝒌 − 𝜺

From dimensional analysis:

𝑇 ~
𝑘2

𝜀
→ 𝑇 = 𝑐𝜇

𝑘2

𝜀

A transport equation for the energy dissipation rate  𝜀 is needed.

TURBULENCE MODELS

TWO EQUATION MODELS: 𝒌 − 𝜺

TRANSPORT EQUATION FOR 𝜺 .

It requires some boring algebra. The steps are the followings:

- Make a Reynolds decomposition of the Navier-Stokes Equation

- Get the equation for the instantaneous fluctuations

- Differentiate it with respect to 𝑥𝑙

- Multiply it by 2
𝜕𝑢𝑖

′

𝜕𝑥𝑙

- Take time average

- The exact transport equation for 𝜀 was obtained.

TURBULENCE MODELS

𝜺 ≡ 𝟐𝒔𝒊𝒍𝒔𝒊𝒍 =
𝝏𝒖𝒊

′

𝝏𝒙𝒍

𝝏𝒖𝒊
′

𝝏𝒙𝒍
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TWO EQUATION MODELS: 𝒌 − 𝜺

TRANSPORT EQUATION FOR 𝜺 .

The different terms arising in the equation for 𝜀 are modelled in analogous way as it 

was done for the turbulent kinetic energy. Finally, the transport equation for the 

energy dissipation rate is:

TURBULENCE MODELS

 𝑢𝑗

𝜕𝜀

𝜕𝑥𝑗
=

𝜕𝑘

𝜕𝑥𝑗

𝑇

𝜎𝜀
+ 

𝜕𝜀

𝜕𝑥𝑗
+ 𝑐𝜀1

𝜀

𝑘
𝑇

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖

𝜕 𝑢𝑖

𝜕𝑥𝑗
− 𝑐𝜀2

𝜀2

𝑘

TWO EQUATION MODELS: 𝒌 − 𝜺

THE SYSTEM OF DIFFERENTIAL EQUATIONS THAT SOLVE THE PROBLEM IS:

TURBULENCE MODELS

 𝑢𝑗

𝜕𝜀

𝜕𝑥𝑗
=

𝜕𝑘

𝜕𝑥𝑗

𝑇

𝜎𝜀
+ 

𝜕𝜀

𝜕𝑥𝑗
+ 𝑐𝜀1

𝜀

𝑘
𝑇

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖

𝜕 𝑢𝑖

𝜕𝑥𝑗
− 𝑐𝜀2

𝜀2

𝑘

REYNOLDS 

EQUATIONS:
 𝑢𝑗

𝜕 𝑢𝑖

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

−  𝑝

𝜌
𝛿𝑖𝑗 + + 𝑇

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖
−

2

3
𝑘𝛿𝑖𝑗

TURBULENT 

VICOSITY:
𝑇 = 𝑐𝜇

𝑘2

𝜀

TURBULENT KINETIC 

ENERGY TRANSPORT:

ENERGY DISSIPATION 

RATE TRANSPORT:

 𝑢𝑗

𝜕𝑘

𝜕𝑥𝑗
=

𝜕𝑘

𝜕𝑥𝑗

𝑇

𝜎𝑘
+ 

𝜕𝑘

𝜕𝑥𝑗
+ 𝑇

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖

𝜕 𝑢𝑖

𝜕𝑥𝑗
− 𝜀

CONTINUITY 

EQUATION:
𝜕 𝑢𝑖

𝜕𝑥𝑖
= 0
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TWO EQUATION MODELS: 𝒌 − 𝜺

VALUES OF THE PARAMETERS INVOLVED IN THE SYSTEM OF EQUATIONS

TURBULENCE MODELS

WHITE. Viscous Fluid Flows

𝑐𝜇 = 0.09 𝜎𝑘 = 1.0 𝜎𝜀 = 1.3 𝑐𝜀1 = 1.44 𝑐𝜀2 = 1.92

These values are, unfortunately, not universal but have to be modified for other
problems such as jets and wakes and recirculating flows (White)

https://www.quora.com/What-is-the-significance-of-a-boundary-layer

TWO EQUATION MODELS: 𝒌 − 𝜺. BOUNDARY CONDITIONS

TURBULENCE MODELS

Solid Boundaries

𝑢+ =
1


𝑙𝑛 𝑦+ + 𝐵 30 < 𝑦+ < 100 𝑢+ =

 𝑢

𝑢∗
, 𝑦+ =

𝑦𝑢∗



In the region 30 < 𝑦+ < 100 , the Reynolds stresses are practically constants and equal to 𝜌𝑢∗
2. 

Convection and diffusion 𝑢′𝑣′ are negligible ⇒ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 :

Boundary condition for 𝑘:

𝑘

𝑢∗
2
=

1

𝑐𝜇

Boundary condition for 𝜀:

𝜀 =
𝑢∗

3

𝑦
Free surface

Usually turbulent stresses, turbulent fluxes and 𝜀 are assumed equal to zero ⇒ symmetry condition 
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TWO EQUATION MODELS: 𝒌 − 𝜺.     LOW REYNOLDS NUMBER EFFECTS 

TURBULENCE MODELS

Modifications to the 𝒌 − 𝜺 model presented before have been developed in order to take 

into account the effect of low Reynolds numbers. They include new parameters that have 

to be calibrated with the experimental data. 

TWO EQUATION MODELS: 𝒌 − 𝛚

THE SYSTEM OF DIFFERENTIAL EQUATIONS THAT SOLVE THE PROBLEM IS:

TURBULENCE MODELS

 𝑢𝑗

𝜕𝜔

𝜕𝑥𝑗
=

𝜕𝑘

𝜕𝑥𝑗

𝑇

𝜎𝜀
+ 

𝜕𝜔

𝜕𝑥𝑗
+ 𝛼

𝜔

𝑘
𝑇

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖

𝜕 𝑢𝑖

𝜕𝑥𝑗
− 𝛽𝜔2

In this model, the turbulent viscosity is given by: 𝑇 =
𝑘

𝜔

 𝑢𝑗

𝜕𝑘

𝜕𝑥𝑗
=

𝜕𝑘

𝜕𝑥𝑗

𝑇

𝜎𝑘
+ 

𝜕𝑘

𝜕𝑥𝑗
+ 𝑇

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖

𝜕 𝑢𝑖

𝜕𝑥𝑗
− 𝛽∗𝑘𝜔

The transport equations for 𝑘 and 𝜔 are:

𝛼 =
13

25
, 𝛽 = 𝛽0𝑓𝛽 , 𝛽∗ = 𝛽0

∗𝑓𝛽
∗ , 𝜎𝑘 = 2 , 𝜎𝜔 = 2 , 𝛽0 =

9

125
, 𝛽0

∗ =
9

100

𝑓𝛽 is a function of the mean vorticity and mean shear deformation rate

𝑓𝛽
∗ is a function of 𝜔 and the spatial derivatives of 𝑘 and 𝜔
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TWO EQUATION MODELS

CONCLUSION

- 𝒌 − 𝜺 : Valid for fully turbulent flows.

Performs poorly for complex flows involving severe pressure gradient, separation, 

strong streamline curvature.

- 𝒌 − 𝝎 ∶ Works well for wall-bounded and low Reynolds number flows. 

Suitable for complex boundary layer flows under adverse pressure gradient and 

separation. Can be used for transitional flows.  

TURBULENCE MODELS

Turbulence models do not provide any new knowledge on turbulence. 
However, they are powerful tools for engineers.

THANKS!!

Questions?
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THE CONCEPT OF TURBULENT VISCOSITY

TURBULENCE MODELS

 𝑢𝑗

𝜕 𝑢𝑖

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

−  𝑝

𝜌
𝛿𝑖𝑗 + + 𝑇

𝜕 𝑢𝑖

𝜕𝑥𝑗
+

𝜕 𝑢𝑗

𝜕𝑥𝑖
−

2

3
𝑘𝛿𝑖𝑗

REYNOLDS EQUATIONS:
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ENSEMBLE AVERAGES??????

TURBULENCE MODELS

TWO EQUATION MODELS: 𝒌 − 𝜺

VALUES OF THE PARAMETERS INVOLVED IN THE SYSTEM OF EQUATIONS

TURBULENCE MODELS

𝑐𝜇 = 0.09 𝜎𝑘 = 1.0 𝜎𝜀 = 1.3 𝑐𝜀1 = 1.44 𝑐𝜀2 = 1.92

These values are, unfortunately, not universal but have to be modified for other
problems such as jets and wakes and recirculating flows (White)

Axisymmetric jets: 𝑐𝜇 = 0.09 − 0.04𝑓 , 𝑐𝜀2 = 1.92 − 0.0667𝑓

𝑓 =
𝛿

∆𝑈𝑚

𝜕𝑈𝑚𝑎𝑥

𝜕𝑥
−

𝜕𝑈𝑚𝑎𝑥

𝜕𝑥

0.2


