UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II Scuola Politecnica e delle Scienze di Base

DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE ED AMBIENTALE CORSO DI LAUREA IN

INGEGNERIA PER L'AMBIENTE E IL TERRITORIO

(CLASSE DELLE LAUREE IN INGEGNERIA CIVILE ED AMBIENTALE, CLASSE N. L-7)

TESI DI LAUREA

"ANALISI SPERIMENTALE E NUMERICA DELL'EFFETTO DELLA DESATURAZIONE SULLA RESISTENZA A LIQUEFAZIONE DELLA SABBIA DI PIEVE DI CENTO (BO)" CANDIDATI

Prof. Ing. Alessandro Flora

CORRELATORI

Ing. Lucia Mele Ing. Gianluca Fasano

Autiero Alessio Matr. M67/393

Matr. M67/385

Minale Annalaura

Contesto operativo

Il presente lavoro si colloca all'interno del progetto europeo LIQUEFACT (www.liquefact.eu)

Principali Obiettivi:

- Implementare una mappa di rischio da liquefazione, su scala europea;
- Sviluppare una metodologia per la valutazione localizzata del potenziale di liquefazione;
- Sviluppare nuove metodologie semplificate per la valutazione della vulnerabilità di strutture e infrastrutture;
- Definire tecniche di mitigazione per ridurre il potenziale di liquefazione.

PROGETTO EUROPEO LIQUEFACT

Obiettivi del lavoro di tesi

- Analizzare il comportamento ciclico di una sabbia sciolta a bassi stati tensionali di confinamento
- Sperimentare la desaturazione come tecnica di consolidamento innovativa per ridurre la suscettibilità a liquefazione
- Modificare un'apparecchiatura di laboratorio per condurre prove su provini parzialmente saturi
- Simulare numericamente i risultati sperimentali

Sviluppo del lavoro di tesi

1. Introduzione

2. Studio dei meccanismi di liquefazione

3. Caso studio e Campo Prove

4. Attività sperimentale al laboratorio DICEA

5. Analisi numerica dei risultati sperimentali

6. Conclusioni

Annalaura Minale

Alessio Autiero

Sviluppo del lavoro di tesi

4									
1.	In	11	rr	h	ш	171	\cap	n	Δ
				,,,					•

2. Studio dei meccanismi di liquefazione

3. Caso studio e Campo Prove

4. Attività sperimentale al laboratorio DICEA

5. Analisi numerica dei risultati sperimentali

6. Conclusioni

Il terremoto dell'Emilia Romagna 2012

Il 20 Maggio 2012 un violento terremoto di magnitudo momento Mw=5.9 colpisce la regione emiliana e in particolare i centri abitati di Sant'agostino, Mirabello, Poggio Renatico e Pieve di Cento, principale oggetto di studio della presente tesi.

Per la prima volta in Italia si sono verificati diffusi fenomeni di liquefazione

Sviluppo del lavoro di tesi

4 1			- 1			
1.	Int	ro	dı	17	10	ne

- 2. Studio dei meccanismi di liquefazione
- 3. Caso studio e Campo Prove
- 4. Attività sperimentale al laboratorio DICEA
- 5. Simulazione numerica dei risultati sperimentali
- 6. Conclusioni

LIQUEFAZIONE

Cause:

- Mancanza di coesione
- Bassi gradi di addensamento
- Completa saturazione

$$\begin{array}{c} \textit{Accumulo} \\ \textit{pressioni} \\ \textit{neutre} \end{array} \longrightarrow \begin{bmatrix} \sigma = \sigma' + u \\ \hline \\ \textbf{t}_{lim} = \sigma'_v \cdot tan\phi = 0 \\ \hline \\ \textit{al taglio} \end{array} \right) \longrightarrow \begin{array}{c} \textit{Perdita di resistenza} \\ \textit{al taglio} \\ \end{array}$$

2. Studio dei meccanismi di liquefazione

Sviluppo del lavoro di tesi

4			,
1.	Intro	duzi	one

2. Studio dei meccanismi di liquefazione

3. Caso studio e Campo Prove

4. Attività sperimentale al laboratorio DICEA

5. Simulazione numerica dei risultati sperimentali

6. Conclusioni

Caso studio e Campo prove

Caratterizzazione del sito

Il sito di Pieve di Cento (BO) è la località scelta per realizzare il campo prove.

Cosa è stato fatto in sito?

- Sabbia prelevata nei primi 2m con una benna
- Sondaggi (CH1, CH1bis, CH2, CH3, CH4, CH5)
- Provini indisturbati (Gel-Pusher, Osterberg)
- Prove CPTU (CPTU1, CPTU2, CPTU3, CPTU4, CPTU5)
- Cross-hole e analisi tomografiche

Modello stratigrafico

Z (m)	Strati	Nome	
<u>1</u> 1.8	SL1	Sabbia limosa (crosta)	Sabbia prelevata
2.8	SL2	Sabbia limosa	con una benna
4.2	SDL1	Sabbia debolmente limosa	Strato potenzialmente liquefacibile
4.8	LA1	Limo argilloso	
6	SDL2	Sabbia debolmente limosa	
	LA2	Limo argilloso	

Sviluppo del lavoro di tesi

4		
1	INTRACTION	\sim
Ι.	Introduzio	
	HILLOUGE	

- 2. Studio dei meccanismi di liquefazione
- 3. Caso studio e Campo Prove
- 4. Attività sperimentale al laboratorio DICEA
- 5. Simulazione numerica dei risultati sperimentali
- 6. Conclusioni

Pieve di Cento: test di laboratorio

	Bennata (primi 2m)		Sa	bbia grigia
Tests	Numero di test	Info	Numero di test	Info
Permeabilità	3	Dr 30- 40- 60%	1	Dr 40%
Prova edometrica	1	Dr 15%	-	-
Triassiale monotona(TX)	8	CID e CIU 10<σ′ _c <250 kPa	5	CID e CIU 30<σ′ _c <150 kPa
Triassiale ciclica(CTX)	3	Dr 47% σ' _c =50 kPa	2	CID 30<σ' _c <150 kPa
Taglio semplice ciclico(CSS)	7	Dr 45 e 74% σ' _v =50 kPa	20	Dr 45 e 70% σ' _v =50 kPa
Velocità onde di compressione(Vp)	-	-	11	Dr 41% 0 <sr<100%< td=""></sr<100%<>
Test di resistività (ρ)	-	-	5	Dr 40% 74 <sr<100%< td=""></sr<100%<>

4. Attività sperimentale al laboratorio DICEA

Pieve di Cento (BO) – Bennata dei primi 2 m

G _s	2,667
e _{max} -e _{min}	1,04 – 0,546
D ₅₀ (mm)	0,18
$U_c (=d_{60}/d_{10})$	2,67
FC (d<0,075mm) (%)	8,0

Apparecchiature utilizzare per la sperimentazione

Cella triassiale a Stress Path controllato di tipo Bishop & Wesley (CTX)

Apparecchiatura di taglio semplice ciclico (CSS)

Entrambe sono disponibili presso il laboratorio di Geotecnica del Dipartimento di Ingegneria Civile, Edile ed Ambientale dell'Università di Napoli Federico II.

Pieve di Cento (BO) – Campioni indisturbati

Boreholes	date	Osterberg (m)	Gel Push (m)
CH1	04/09/2017		
CH1 BIS	09/09/2017	2,0-2,5	2,5-3,5
CHIBIS	08/03/2017	09/2017 2,0-2,5 3,5-4,0 3,0-3,5 4,0-4,5 09/2017 2,50-3,00 4,50-5,00 2,00-2,50 09/2017 4,50-5,00 2,0-2,5	
		3,0-3,5	4,5-5,5
CH2	06/09/2017	4,0-4,5	
CUD	05/00/2017	2,50-3,00	3,5-4,5
СНЗ	06/09/2017	4,50-5,00	
CHA		2,00-2,50	5,0-6,0
CH4	07/09/2017	4,50-5,00	
CH5		2,0-2,5	2,00-3,00
CHS	11/09/2017	3,5-4,0	

		Dr (%)	
z (m)	CPTU*	GP	Ost
2,5	20	72	-
3,3	36	39	-
3,6	30	-	73
4,7	45	-	64
5,0	32	35	-

^{*}Kulhawy and Maine (1990)

Campionatore Osterberg

Campionatore Gel-Pusher

Pieve di Cento: Programma di prove per campioni indisturbati <u>Prove di taglio semplice ciclico</u>

Boreholes	date	Osterberg (m)	Gel Push (m)
CH1	04/09/2017		
CU1 DIS	08/09/2017	2,0-2,5	2,5-3,5
CH1 BIS	08/09/2017	3,5-4,0	,5-4,0 ,0-3,5 ,0-4,5 50-3,00 3,5-4,5
		3,0-3,5	4,5-5,5
CH2	06/09/2017	4,0-4,5	
CUD	05/00/2017	2,50-3,00	3,5-4,5
CH3	06/09/2017	4,50-5,00	
CUA		2,00-2,50	5,0-6,0
CH4	07/09/2017	4,50-5,00	
CUE		2,0-2,5	2,00-3,00
CH5	11/09/2017	3,5-4,0	

Tipologia campione	Numero prove
CH1bis OST	4
CH1bis GP	2
CH2 GP	1
CH3 OST	2
CH5 OST	3
CH5 GP	2

Le prove di taglio semplice ciclico sui campioni indisturbati sono state eseguite a diverse profondità comprese tra 2.0m e 5m e successivamente sono state realizzate le *curve* granulometriche degli stessi

Pieve di Cento (BO) – Programma di prove su campioni indisturbati <u>Prove di taglio semplice ciclico non drenate</u>

Prove	Sabbia	e _c	D _r (%)	σ' _ν (kPa)	CRR	N _{liq}
Gel Pusher z=5m	SDL1	0.688	49	48.4	0.12	33
Gel Pusher z=3m	SDL1	0.696	42	28.5	0.11	36
Gel Pusher z=3m	SDL1	0.631	57	29.4	0.12	12
Osterberg z=4.8m	SDL1	0.545	76	49	0.12	86
Osterberg z=4.8m	SDL1	0.658	51	49.8	0.14	53
Osterberg z=3.6m	SDL1	0.680	74	64.1	0.1	320
Osterberg z=4m	SDL1	0.622	85	39.3	0.13	24
Osterberg z=4m	SDL1	0.824	44	39.2	0.14	26
Gel Pusher z=3 m	SDL1	0.654	78	32.3	0.095	NO
Osterberg z=2.5 m	SDL1	0.682	72	50	0.14	68.6

4. Attività sperimentale al laboratorio DICEA

Pieve di Cento – Prove di taglio semplice ciclico non drenate

Pieve di Cento (BO) – Campioni indisturbati Risultati

Pieve di Cento (BO) – Campioni indisturbati Risultati

Curve granulometriche Pieve di Cento (BO) - Sondaggi

Interventi in sito a Pieve di Cento (BO)

Pieve di Cento (BO) – Sabbia grigia (SDL1)

G_s	2,655				
e _{max} -e _{min}	0,884 – 0,442				
D ₅₀ (mm)	0,30				
$U_c (=d_{60}/d_{10})$	5				
FC (d<0,075mm) (%)	10,0				

Pieve di Cento (BO) – Programma di prove su sabbia grigia SDL1 satura <u>Prove di taglio semplice ciclico non drenate</u>

	Prove	Sabbia	e _c	D _r (%)	σ' _ν (kPa)	Sr	CRR	N _{liq}
	PdC_DSS_1	SDL1	0.693	43	47.75	1	0.115	67
	PdC_DSS_2	SDL1	0.693	44	45.17	1	0.10	170
	PdC_DSS_3	SDL1	0.690	44	49.10	1	0.15	7
D _r 45%	PdC_DSS_4	SDL1	0.696	43	46.60	1	0.12	9
	PdC_DSS_5	SDL1	0.693	43	50	1	0.14	8
	PdC_DSS_6	SDL1	0.692	45	43	1	0.12	NO
D _r 65%	PdC_DSS_7	SDL1	0.598	65	50	1	0.15	11
	PdC_DSS_8	SDL1	0.607	63	50	1	0.135	74
	PdC_DSS_9	SDL1	0.602	64	50	1	0.155	5
	PdC_DSS_10	SDL1	0.585	68	50	1	0.165	9
	PdC_DSS_11	SDL1	0.598	65	50	1	0.15	10
	PdC_DSS_12	SDL1	0.596	65	50	1	0.143	25.5

4. Attività sperimentale al laboratorio DICEA

Pieve di Cento (BO) – Risultati prove su sabbia grigia SDL1 satura Prove di taglio semplice ciclico

Si nota come al crescere della densità relativa, la resistenza a liquefazione aumenti.

L'apparecchiatura di taglio semplice ciclico non drenato può essere modificata per condurre prove non sature

Pieve di Cento: Programma di prove non sature <u>Prove di taglio semplice ciclico non drenate</u>

	Prove	Sabbia	D _r (%)	σ' _v (kPa)	Sr	CRR	N _{liq}
	Pdc_Dss_1_NS	SDL1	45	49.1	0.90	0.15	80
	PdC_DSS_2_NS	SDL1	45	49.1	0.90	0.18	51
	PdC_DSS_3_NS	SDL1	45	49.1	0.90	0.195	18
PdC_DSS_4_N	PdC_DSS_4_NS	SDL1	45	49.2	0.95	0.15	33
D _r 45%	PdC_DSS_5_NS	SDL1	45	49.3	0.95	0.165	7
	PdC_DSS_6_NS	SDL1	45	48.7	0.95	0.15	11
	PdC_DSS_7_NS	SDL1	45	48.5	0.98	0.15	7
	PdC_DSS_8_NS	SDL1	45	47.9	0.98	0.13	36
	PdC_DSS_9_NS	SDL1	45	50.1	0.98	0.14	24

4. Attività sperimentale al laboratorio DICEA

Curve di resistenza ciclica a diversi gradi di saturazione

La riduzione del grado di saturazione comporta un incremento della resistenza a liquefazione

Criterio di progetto dell'intervento di desaturazione

Criterio di progetto dell'intervento di desaturazione

Per monitorare il grado di saturazione in sito post intervento:

Vp(Sr)

velocità delle onde di compressione

ρ(Sr)
resistività del terreno

$$V_p = \frac{l}{t}$$

$$\rho = R \frac{A}{I}$$

Criterio di progetto dell'intervento di desaturazione

ρ (Ohm*m)	Sr (%)
33	100
40	95
66.8	90
75.4	80
105.6	74

V _p (m/s)	Sr (%)					
1512	100.0%					
667	99.8%					
596	98.8%					
426	95.8%					
306	90.8%					
332	90.8%					
307	89.9%					

Sviluppo del lavoro di tesi

4	'n					- 1						
1.	ı	n	t	r		Ы	1.1	7	İ		n	е
上 .	ш	11	·	1	\cup	u	u	_	ı	\cup		

2. Studio dei meccanismi di liquefazione

3. Caso studio e Campo Prove

4. Attività sperimentale al laboratorio DICEA

5. Simulazione numerica dei risultati sperimentali

6. Conclusioni

Sviluppo analisi numeriche

- ➤ 1. Modello costitutivo : PM4Sand (2018)
- ≥2. Calibrazione modello
- ➤ 3. Simulazione prove sperimentali: prova taglio ciclico semplice (CSS)
- ▶4. Risultati

Modello costitutivo avanzato: PM4Sand

Il modello PM4Sand simula il comportamento del materiale(terreni) durante la fase di carico dinamico, compresa la generazione delle sovrappressioni nei pori, la liquefazione e post liquefazione. Il modello è definito nella condizione di deformazione piana (x,y). Le deformazioni sono suddivise in: deformazioni volumetriche $\mathbf{\varepsilon}_{\mathbf{v}}$ e in deformazioni deviatoriche \mathbf{e} .

$$\varepsilon_V = \varepsilon_{xx} + \varepsilon_{yy}$$

$$e = \varepsilon - \frac{\varepsilon_V}{3}I = \begin{pmatrix} \varepsilon_{xx} - \frac{\varepsilon_V}{3} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} - \frac{\varepsilon_V}{3} \end{pmatrix}$$

Il tensore dello stress efficace e la tensione efficace media hanno la seguente forma:

$$\sigma' = \begin{pmatrix} \sigma'_{xx} & \sigma'_{xy} \\ \sigma'_{yx} & \sigma'_{yy} \end{pmatrix}$$

$$p = \frac{\sigma'_{xx} + \sigma'_{yy}}{2}$$

Modello costitutivo avanzato: PM4Sand

Il comportamento del materiale dipende dal parametro indice di stato relativo $\xi_{\mathbb{R}}$, il quale definisce la tendenza del materiale a contrarsi o a dilatare durante lo shearing, quindi definisce anche la generazione di pressione nell'acqua dei pori positiva o negativa in condizioni non drenate. Il modello include anche parametri di contrazione, dilatazione e di stato critico.

Sviluppo analisi numeriche

- ➤ 1. Modello costitutivo avanzato: PM4Sand (2018)
- ➤ 2. Calibrazione modello
- ➤ 3. Simulazione prove sperimentali: prova taglio ciclico semplice(CSS)
- ▶4. Risultati

Il modello consta di 11 parametri di input che possono essere modificati dall'utente. I parametri del modello sono classificati in due categorie:

Sr=1	prova 22/02/2018 prova23/02/2018
Sr=0.95	prova 05/03/2018 prova08/03/2018 prova23/03/2018
Sr=0.9	prova 03/04/2018

- Modulo di taglio normalizzato G0[-]:

Il modulo di taglio G_0 è correlata alla velocità delle onde di taglio secondarie VS1, dove quest'ultima è correlata alla densità relativa $D_{R.}$

$$G_0 = \frac{\rho V_{S1}^2}{p_a \left(\frac{1+K_0}{2}\right)^{1/2}} \qquad V_{S1} = 125 (D_R + 1)^{0.1}$$

- Parametro di resistenza di picco nb[-]:

Il parametro di contrazione controlla la posizione della superficie di contrazione rispetto a quella di stato critico.

nb=0.5

- Parametro di dilatanza nd[-]:

Il parametro di dilatanza controlla l'andamento dello stress-ratio quando passa da fase contraente a dilatante e vice versa.

nd=0.5

- Parametri della linea di stato critico Q e R [-]:

I parametri Q e R definiscono la linea di stato critico.

$$D_{R,CS} = rac{R}{Q - ln100rac{p'}{p_a}}$$

Dove D_{R,CS} corrisponde alla densità relativa del materiale della linea di stato critico.

- Angolo di stato critico:

L'angolo di stato critico definisce la pendenza e la posizione nel piano della linea di stato

critico.

$$\varphi_{CV} = 31^{\circ}$$

- Parametro di addensamento hp₀[-]:

Il parametro di addensamento regola l'innesco della liquefazione da parte del materiale. Il parametro hp_0 è stato calibrato in modo da ottenere la stessa curva di resistenza ciclica sperimentale, rispettando il criterio di innesco della liquefazione (Ru=0.9).

Sviluppo analisi numeriche

- ➤ 1. Modello costitutivo : PM4Sand (2018)
- ≥2. Calibrazione modello
- ➤ 3. Simulazione prove sperimentali: prova taglio ciclico semplice(CSS)
- ▶4. Risultati

Simulazione prove sperimentali

Analisi di
Simulazione
prove sperimentali di
taglio ciclico semplice di
provini saturi e
parzialmente saturi

Approccio 1:

Best fitting mediante la calibrazione dei parametri dello scheletro solido

Approccio 2:

Best fitting mediante la calibrazione della rigidezza del fluido (Kw)

5. Simulazione numerica dei risultati sperimentali

5. Simulazione numerica dei risultati sperimentali

5. Simulazione numerica dei risultati sperimentali

Calibrazione rigidezza del fluido

- Il provino è stato realizzato completamente saturo(livello falda 0 m).
- Per una corretta valutazione dell'incidenza della variabilità del grado di saturazione sulla risposta meccanica del provino si è dovuto introdurre un nuovo parametro(previa calibrazione) che interpretasse al meglio la natura trifasica del mezzo non saturo:

$$K_f = \frac{K_{W,ref}}{n} \qquad \qquad \text{modulo di rigidezza del fluido dei pori}$$

$$\mathsf{K}_{\mathsf{W}} \text{ (modulo di rigidezza della fase liquida)}$$

$$\mathsf{n} \text{ porosità del terreno}$$

$$\begin{array}{ccc} \mathbf{U} \mathbf{n} \mathbf{d} \mathbf{r} \mathbf{a} \mathbf{n} \mathbf{d} \mathbf{e} \mathbf{n} $

Calibrazione rigidezza del fluido

- Diagramma dati sperimentali Pore Pressure, $arepsilon_V$
- Nelle ipotesi di mezzo saturo il coefficiente angolare medio delle curve coincide con il modulo

D_{R0}	0,42					
G_0	379					
hp_0	0,13					
nb	0,5					
nd	0,5					
Q	9,5					
R	0,8					

5. Simulazione numerica dei risultati sperimentali

Sviluppo analisi numeriche

- ➤ 1. Modello costitutivo : PM4Sand (2018)
- ≥2. Calibrazione modello
- ➤ 3. Simulazione prove sperimentali: prova taglio ciclico semplice(CSS)
- ▶4. Risultati

Curva di calibrazione hp0-Sr

La riduzione del grado di saturazione comporta un incremento del parametro hp0 il quale comporta un ritardo dell' innesco della liquefazione a parità di grado di saturazione.

Curva calibrazione Kw-Sr

La riduzione del grado di saturazione comporta un decremento del modulo di rigidezza dell'acqua che denota una riduzione della compressibilità del fluido dei pori e quindi un ritardo nell'innesco del fenomeno della liquefazione.

Effetti sulla resistenza ciclica per parziale saturazione indotta

La riduzione del grado di saturazione comporta un incremento del numero di cicli a liquefazione che si tramuta in un aumento della resistenza a liquefazione.

Il presente grafico mostra come il modello sia in grado di simulare con buona precisone il comportamento a liquefazione in condizione di parziale saturazione.

Confronto metodi di simulazione

Dal presente grafico si nota come la simulazione mediante hp0 sia più precisa nel individuare l'innesco della liquefazione mentre la simulazione mediante Kf segue meglio l'andamento e lo sviluppo delle sovrappressioni

Sviluppo del lavoro di tesi

4	ı											
1.	ı	n	t	r		Ы	1.1	7	İ		n	е
上 .	ш	11	·	1	\cup	u	u	_	ı	\cup		

2. Studio dei meccanismi di liquefazione

3. Caso studio e Campo Prove

4. Attività sperimentale al laboratorio DICEA

5. Simulazione numerica dei risultati sperimentali

6. Conclusioni

Conclusioni

- L'effetto dell'addensamento è positivo nei confronti della suscettibilità a liquefazione. Infatti
 i campioni Osterberg CH1bis con Dr>70% e CH3 con Dr=64% presentano un CRR più alto dei
 campioni con densità relativa minore.
- Le prove di laboratorio mostrano che la riduzione del grado di saturazione incrementa la resistenza a liquefazione della sabbia mettendo in luce l'efficacia dell'intervento da effettuare in sito.
- La misura in situ delle velocità delle onde compressione permette di monitorare la parziale saturazione indotta atta alla riduzione del rischio di liquefazione del sito in esame.
- Il modello presenta una rigidezza superiore al fenomeno sperimentale, costituendo una forte limitazione per la previsione delle deformazioni per il caso studio in esame.
- Buona approssimazione dei risultati numerici con i valori sperimentali delle sovrappressioni.
- Individuazione di relazioni tra i diversi parametri di calibrazione, che ci consentono di simulare il comportamento meccanico di terreni con gradi di saturazione diversi da quelli da provati.

Grazie per l'attenzione!!!