UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II

Scuola Politecnica e delle Scienze di Base

DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE ED AMBIENTALE

CORSO DI LAUREA IN

INGEGNERIA PER L'AMBIENTE E IL TERRITORIO

(CLASSE DELLE LAUREE IN INGEGNERIA CIVILE ED AMBIENTALE, CLASSE N. L-7)

TESI DI LAUREA

"ANALISI SPERIMENTALE E NUMERICA DELL'EFFETTO DELLA DESATURAZIONE SULLA RESISTENZA A LIQUEFAZIONE DELLA SABBIA DI PIEVE DI CENTO (BO)"

RELATORE

Prof. Ing. Alessandro Flora

CORRELATORI

Ing. Lucia Mele

Ing. Gianluca Fasano

CANDIDATI

Minale Annalaura Matr. M67/385

Autiero Alessio Matr. M67/393

Contesto operativo

Il presente lavoro si colloca all'interno del progetto europeo LIQUEFACT (www.liquefact.eu)

Principali Obiettivi:

- Implementare una mappa di rischio da liquefazione, su scala europea;
- Sviluppare una metodologia per la valutazione localizzata del potenziale di liquefazione;
- Sviluppare nuove metodologie semplificate per la valutazione della vulnerabilità di strutture e infrastrutture;
- Definire tecniche di mitigazione per ridurre il potenziale di liquefazione.

PROGETTO EUROPEO LIQUEFACT

Obiettivi del lavoro di tesi

- Analizzare il comportamento ciclico di una sabbia sciolta a bassi stati tensionali di confinamento
- Sperimentare la desaturazione come tecnica di consolidamento innovativa per ridurre la suscettibilità a liquefazione
- Modificare un'apparecchiatura di laboratorio per condurre prove su provini parzialmente saturi
- Simulare numericamente i risultati sperimentali

Sviluppo del lavoro di tesi

Sviluppo del lavoro di tesi

1. Introduzione

- 2. Studio dei meccanismi di liquefazione
- 3. Caso studio e Campo Prove
- 4. Attività sperimentale al laboratorio DICEA
- 5. Analisi numerica dei risultati sperimentali

6. Conclusioni

Il terremoto dell'Emilia Romagna 2012

Il 20 Maggio 2012 un violento terremoto di magnitudo momento Mw=5.9 colpisce la regione emiliana e in particolare i centri abitati di Sant'agostino, Mirabello, Poggio Renatico e Pieve di Cento, principale oggetto di studio della presente tesi.

Per la prima volta in Italia si sono verificati diffusi fenomeni di liquefazione

1. Introduzione

Sviluppo del lavoro di tesi

1. Introduzione

- 2. Studio dei meccanismi di liquefazione
- 3. Caso studio e Campo Prove
- 4. Attività sperimentale al laboratorio DICEA
- 5. Simulazione numerica dei risultati sperimentali

6. Conclusioni

LIQUEFAZIONE

а

Cause:

- Mancanza di coesione
- Bassi gradi di addensamento
- Completa saturazione

2. Studio dei meccanismi di liquefazione

Sviluppo del lavoro di tesi

1. Introduzione

- 2. Studio dei meccanismi di liquefazione
- 3. Caso studio e Campo Prove
- 4. Attività sperimentale al laboratorio DICEA
- 5. Simulazione numerica dei risultati sperimentali

6. Conclusioni

Caso studio e Campo prove

Caratterizzazione del sito

Il sito di Pieve di Cento (BO) è la località scelta per realizzare il campo prove. **Cosa è stato fatto in sito?**

- Sondaggi (CH1, CH1bis, CH2, CH3, CH4, CH5)
- Provini indisturbati (Gel-Pusher, Osterberg)
- Prove CPTU (CPTU1, CPTU2, CPTU3, CPTU4, CPTU5)
- Cross-hole e analisi tomografiche

3. Caso studio e Campo Prove

CARATTERIZZAZIONE DEL SITO

Modello stratigrafico

3. Caso studio e Campo Prove

Sviluppo del lavoro di tesi

1. Introduzione

- 2. Studio dei meccanismi di liquefazione
- 3. Caso studio e Campo Prove

4. Attività sperimentale al laboratorio DICEA

5. Simulazione numerica dei risultati sperimentali

6. Conclusioni

CARATTERIZZAZIONE DEL SITO

CARATTERIZZAZIONE DEL SITO Pieve di Cento: test di laboratorio

	Benna	ata (primi 2m)	Sa	bbia grigia
Tests	Numero di test	Info	Numero di test	Info
Permeabilità	3	Dr 30- 40- 60%	1	Dr 40%
Prova edometrica	1	Dr 15%	-	-
Triassiale monotona(TX)	8	CID e CIU 10<σ' _c <250 kPa	5	CID e CIU 30 <o'<sub>c<150 kPa</o'<sub>
Triassiale ciclica(CTX)	3	Dr 47% σ' _c =50 kPa	2	CID 30 <o'<sub>c<150 kPa</o'<sub>
Taglio semplice ciclico(CSS)	7	Dr 45 e 74% σ' _v =50 kPa	20	Dr 45 e 70% σ' _v =50 kPa
Velocità onde di compressione(Vp)	-	-	11	Dr 41% 0 <sr<100%< td=""></sr<100%<>
Test di resistività (ρ)	-	-	5	Dr 40% 74 <sr<100%< td=""></sr<100%<>

CARATTERIZZAZIONE DEL SITO

Pieve di Cento (BO) – Bennata dei primi 2 m

G _s	2,667
e _{max} -e _{min}	1,04 - 0,546
D ₅₀ (mm)	0,18
U _c (=d ₆₀ /d ₁₀)	2,67
FC (d<0,075mm) (%)	8,0

ATTIVITA' SPERIMENTALE Apparecchiature utilizzare per la sperimentazione

Cella	tria	ssia	ale	а	Str	<u>ess</u>	Path
<u>control</u>	lato	di	tipo	Bis	hop	&	Wesley
<u>(CTX)</u>							

Apparecchiatura di taglio semplice ciclico (CSS)

Entrambe sono disponibili presso il laboratorio di Geotecnica del Dipartimento di Ingegneria Civile, Edile ed Ambientale dell'Università di Napoli Federico II.

Pieve di Cento (BO) – Campioni indisturbati

Boreholes	date	Osterberg (m)	Gel Push (m)
CH1	04/09/2017		
	08/09/2017	2,0-2,5	2,5-3,5
CHIBIS	08/03/2017	3,5-4,0	
		3,0-3,5	4,5-5,5
CH2	06/09/2017	4,0-4,5	
		2 50 2 00	2545
CH3	06/09/2017	2,50-3,00	3,5-4,5
		4,50-5,00	
CHA		2,00-2,50	5,0-6,0
Cn4	07/09/2017	4,50-5,00	
CH5		2,0-2,5	2,00-3,00
	11/09/2017	3,5-4,0	

	Dr (%)					
z (m)	CPTU*	GP	Ost			
2,5	20	72	-			
3,3	36	39	-			
3,6	30	-	73			
4,7	45	-	64			
5,0	32	35	-			

*Kulhawy and Maine (1990)

Campionatore Osterberg Campionatore Gel-Pusher

Pieve di Cento: Programma di prove per campioni indisturbati Prove di taglio semplice ciclico

Boreholes	date	Osterberg (m)	Gel Push (m)	Tipologia	Numero
CH1	04/09/2017			campione	prove
CH1 BIS	08/09/2017	2,0-2,5	2,5-3,5		
CHIBIS	08/03/2017	3,5-4,0		CH1bis OST	4
		3,0-3,5	4,5-5,5		-
CH2	06/09/2017	4,0-4,5		CH1bis GP	2
				CH2 GP	1
CH3	06/09/2017	2,50-3,00	3,5-4,5		-
СПБ	00/03/2017	4,50-5,00		CH3 OST	2
CUA		2,00-2,50	5,0-6,0		
CH4	07/09/2017	4,50-5,00		CH5 OST	3
CUE		2,0-2,5	2,00-3,00		_
CHO	11/09/2017	3,5-4,0		CH5 GP	2

Le prove di taglio semplice ciclico sui campioni indisturbati sono state eseguite a diverse profondità comprese tra 2.0m e 5m e successivamente sono state realizzate le *curve granulometriche* degli stessi

Pieve di Cento (BO) – Programma di prove su campioni indisturbati <u>Prove di taglio semplice ciclico non drenate</u>

Prove	Sabbia	e _c	D _r (%)	σ' _v (kPa)	CRR	N _{liq}
Gel Pusher z=5m	SDL1	0.688	49	48.4	0.12	33
Gel Pusher z=3m	SDL1	0.696	42	28.5	0.11	36
Gel Pusher z=3m	SDL1	0.631	57	29.4	0.12	12
Osterberg z=4.8m	SDL1	0.545	76	49	0.12	86
Osterberg z=4.8m	SDL1	0.658	51	49.8	0.14	53
Osterberg z=3.6m	SDL1	0.680	74	64.1	0.1	320
Osterberg z=4m	SDL1	0.622	85	39.3	0.13	24
Osterberg z=4m	SDL1	0.824	44	39.2	0.14	26
Gel Pusher z=3 m	SDL1	0.654	78	32.3	0.095	NO
Osterberg z=2.5 m	SDL1	0.682	72	50	0.14	68.6

Pieve di Cento – Prove di taglio semplice ciclico non drenate

Pieve di Cento (BO) – Campioni indisturbati Risultati

Pieve di Cento (BO) – Campioni indisturbati Risultati

Curve granulometriche Pieve di Cento (BO) - Sondaggi

Interventi in sito a Pieve di Cento (BO)

CARATTERIZZAZIONE DEL SITO

Pieve di Cento (BO) – Sabbia grigia (SDL1)

Pieve di Cento (BO) – Programma di prove su sabbia grigia SDL1 satura <u>Prove di taglio semplice ciclico non drenate</u>

	Prove	Sabbia	e _c	D _r (%)	σ' _v (kPa)	Sr	CRR	N _{liq}
	PdC_DSS_1	SDL1	0.693	43	47.75	1	0.115	67
	PdC_DSS_2	SDL1	0.693	44	45.17	1	0.10	170
D 450/	PdC_DSS_3	SDL1	0.690	44	49.10	1	0.15	7
D _r 45%	PdC_DSS_4	SDL1	0.696	43	46.60	1	0.12	9
	PdC_DSS_5	SDL1	0.693	43	50	1	0.14	8
	PdC_DSS_6	SDL1	0.692	45	43	1	0.12	NO
	PdC_DSS_7	SDL1	0.598	65	50	1	0.15	11
	PdC_DSS_8	SDL1	0.607	63	50	1	0.135	74
D _r 65%	PdC_DSS_9	SDL1	0.602	64	50	1	0.155	5
	PdC_DSS_10	SDL1	0.585	68	50	1	0.165	9
	PdC_DSS_11	SDL1	0.598	65	50	1	0.15	10
	PdC_DSS_12	SDL1	0.596	65	50	1	0.143	25.5

CARATTERIZZAZIONE DEL SITO

Pieve di Cento (BO) – Risultati prove su sabbia grigia SDL1 satura Prove di taglio semplice ciclico

Si nota come al crescere della densità relativa, la resistenza a liquefazione aumenti.

L'apparecchiatura di taglio semplice ciclico non drenato può essere modificata per condurre prove non sature

Pieve di Cento: Programma di prove non sature <u>Prove di taglio semplice ciclico non drenate</u>

	Prove	Sabbia	D _r (%)	σ' _v (kPa)	Sr	CRR	N _{liq}
	Pdc_Dss_1_NS	SDL1	45	49.1	0.90	0.15	80
	PdC_DSS_2_NS	SDL1	45	49.1	0.90	0.18	51
	PdC_DSS_3_NS	SDL1	45	49.1	0.90	0.195	18
	PdC_DSS_4_NS	SDL1	45	49.2	0.95	0.15	33
D _r 45%	PdC_DSS_5_NS	SDL1	45	49.3	0.95	0.165	7
	PdC_DSS_6_NS	SDL1	45	48.7	0.95	0.15	11
	PdC_DSS_7_NS	SDL1	45	48.5	0.98	0.15	7
	PdC_DSS_8_NS	SDL1	45	47.9	0.98	0.13	36
	PdC_DSS_9_NS	SDL1	45	50.1	0.98	0.14	24

Curve di resistenza ciclica a diversi gradi di saturazione

La riduzione del grado di saturazione comporta un incremento della resistenza a liquefazione

Criterio di progetto dell'intervento di desaturazione

Criterio di progetto dell'intervento di desaturazione

Per monitorare il grado di saturazione in sito post intervento:

Vp(Sr) velocità delle onde di compressione

$$V_p = \frac{l}{t}$$

$$\rho=R\frac{A}{l}$$

Criterio di progetto dell'intervento di desaturazione 150 $\rho = -228.2 \ln(Sr) + 1084$ $R^2 = 0.9397$ ρ (Ohm*m) Sr (%) ρ (ohm*m) 100 33 100 40 95 50 66.8 90 80 75.4 105.6 74 0 0.95 0.9 1600 1400 V_{p} (m/s) Sr (%) 1/2Kb 4G 1200 100.0% V_P^{taratura} = 1512 (s/u) 800 d/ 600 $(n)\rho_s + n\rho_f$ 667 99.8% 600 98.8% 596 400 95.8% 426 Vp Taratura 200 90.8% 306 Vp Misurate 0 90.8% 332 0.9 0.95 1 307 89.9% Sr

Sviluppo del lavoro di tesi

1. Introduzione

- 2. Studio dei meccanismi di liquefazione
- 3. Caso studio e Campo Prove
- 4. Attività sperimentale al laboratorio DICEA
- 5. Simulazione numerica dei risultati sperimentali
- 6. Conclusioni

Sviluppo analisi numeriche

▶1. Modello costitutivo : PM4Sand (2018)

▶2. Calibrazione modello

➤ 3. Simulazione prove sperimentali: prova taglio ciclico semplice (CSS)

≻4. Risultati

Modello costitutivo avanzato: PM4Sand

Il modello PM4Sand simula il comportamento del materiale(terreni) durante la fase di carico dinamico, compresa la generazione delle sovrappressioni nei pori, la liquefazione e post liquefazione. Il modello è definito nella condizione di deformazione piana (x,y). Le deformazioni sono suddivise in: deformazioni volumetriche $\mathbf{\varepsilon}_{v}$ e in deformazioni deviatoriche \mathbf{e} .

$$\varepsilon_V = \varepsilon_{xx} + \varepsilon_{yy}$$

$$e = \varepsilon - \frac{\varepsilon_V}{3}I = \begin{pmatrix} \varepsilon_{xx} - \frac{\varepsilon_V}{3} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} - \frac{\varepsilon_V}{3} \end{pmatrix}$$

Il tensore dello stress efficace e la tensione efficace media hanno la seguente forma:

$$\sigma' = \begin{pmatrix} \sigma'_{xx} & \sigma'_{xy} \\ \sigma'_{yx} & \sigma'_{yy} \end{pmatrix}$$
$$p = \frac{\sigma'_{xx} + \sigma'_{yy}}{2}$$

Modello costitutivo avanzato: PM4Sand

Il comportamento del materiale dipende dal parametro indice di stato relativo ξ_R , il quale definisce la tendenza del materiale a contrarsi o a dilatare durante lo shearing, quindi definisce anche la generazione di pressione nell'acqua dei pori positiva o negativa in condizioni non drenate. Il modello include anche parametri di contrazione, dilatazione e di stato critico.

Sviluppo analisi numeriche

➤1. Modello costitutivo avanzato: PM4Sand (2018)

- ≻2. Calibrazione modello
- ➤3. Simulazione prove sperimentali: prova taglio ciclico semplice(CSS)
- ▶4. Risultati

Il modello consta di 11 parametri di input che possono essere modificati dall'utente. I parametri del modello sono classificati in due categorie:

Sr=1	prova 22/02/2018	prova23/02/2018	
Sr=0.95	prova 05/03/2018	prova08/03/2018	prova23/03/2018
Sr=0.9	prova 03/04/2018		

- Modulo di taglio normalizzato G0[-]:

Il modulo di taglio G₀ è correlata alla velocità delle onde di taglio secondarie VS1, dove quest'ultima è correlata alla densità relativa D_R.

$$G_0 = \frac{\rho V_{S1}^2}{p_a \left(\frac{1+K_0}{2}\right)^{1/2}} \qquad V_{S1} = 125 \ (D_R + 1)^{0.1}$$

- Parametro di resistenza di picco nb[-]:

Il parametro di contrazione controlla la posizione della superficie di contrazione rispetto a quella di stato critico.

nb=0.5

- Parametro di dilatanza nd[-]:

Il parametro di dilatanza controlla l'andamento dello stress-ratio quando passa da fase contraente a dilatante e vice versa.

nd=0.5

- Parametri della linea di stato critico Q e R [-]:

I parametri Q e R definiscono la linea di stato critico.

Q=9,5 R=0,8

$$D_{R,CS} = \frac{R}{Q - ln100\frac{p'}{p_a}}$$

Dove $D_{R,CS}$ corrisponde alla densità relativa del materiale della linea di stato critico.

- Angolo di stato critico:

L' angolo di stato critico definisce la pendenza e la posizione nel piano della linea di stato critico.

$$\varphi_{CV} = 31^{\circ}$$

- Parametro di addensamento hp₀[-]:

Il parametro di addensamento regola l'innesco della liquefazione da parte del materiale. Il parametro hp₀ è stato calibrato in modo da ottenere la stessa curva di resistenza ciclica sperimentale, rispettando il criterio di innesco della liquefazione (Ru=0.9).

Sviluppo analisi numeriche

- ▶1. Modello costitutivo : PM4Sand (2018)
- ▶2. Calibrazione modello

3. Simulazione prove sperimentali: prova taglio ciclico semplice(CSS)

≻4. Risultati

Simulazione prove sperimentali

Analisi di Simulazione prove sperimentali di taglio ciclico semplice di provini saturi e parzialmente saturi

Approccio 1: Best fitting mediante la calibrazione dei parametri dello scheletro solido Approccio 2: Best fitting mediante la calibrazione della rigidezza del fluido (Kw)

Fitting prove sperimentali

5. Simulazione numerica dei risultati sperimentali

Calibrazione rigidezza del fluido

- Il provino è stato realizzato completamente saturo(livello falda 0 m).
- Per una corretta valutazione dell'incidenza della variabilità del grado di saturazione sulla risposta meccanica del provino si è dovuto introdurre un nuovo parametro(previa calibrazione) che interpretasse al meglio la natura trifasica del mezzo non saturo:

Calibrazione rigidezza del fluido

- Diagramma dati sperimentali Pore Pressure, $arepsilon_V$
- Nelle ipotesi di mezzo saturo il coefficiente angolare medio delle curve coincide con il modulo di rigidezza del fluido dei pori.

D _{R0}	0,42
G ₀	379
hp ₀	0,13
nb	0,5
nd	0,5
Q	9,5
R	0,8

Sviluppo analisi numeriche

- ▶1. Modello costitutivo : PM4Sand (2018)
- ▶2. Calibrazione modello
- ➤3. Simulazione prove sperimentali: prova taglio ciclico

semplice(CSS)

≻4. Risultati

Curva di calibrazione hp0-Sr

La riduzione del grado di saturazione comporta un incremento del parametro hp0 il quale comporta un ritardo dell' innesco della liquefazione a parità di grado di saturazione.

Curva calibrazione Kw-Sr

La riduzione del grado di saturazione comporta un decremento del modulo di rigidezza dell'acqua che denota una riduzione della compressibilità del fluido dei pori e quindi un ritardo nell'innesco del fenomeno della liquefazione.

Effetti sulla resistenza ciclica per parziale saturazione indotta

La riduzione del grado di saturazione comporta un incremento del numero di cicli a liquefazione che si tramuta in un aumento della resistenza a liquefazione.

Il presente grafico mostra come il modello sia in grado di simulare con buona precisone il comportamento a liquefazione in condizione di parziale saturazione.

Confronto metodi di simulazione

Dal presente grafico si nota come la simulazione mediante hp0 sia più precisa nel individuare l'innesco della liquefazione mentre la simulazione mediante Kf segue meglio l'andamento e lo sviluppo delle sovrappressioni

Sviluppo del lavoro di tesi

1. Introduzione

- 2. Studio dei meccanismi di liquefazione
- 3. Caso studio e Campo Prove
- 4. Attività sperimentale al laboratorio DICEA
- 5. Simulazione numerica dei risultati sperimentali

6. Conclusioni

Conclusioni

- L'effetto dell'addensamento è positivo nei confronti della suscettibilità a liquefazione. Infatti i campioni Osterberg CH1bis con Dr>70% e CH3 con Dr=64% presentano un CRR più alto dei campioni con densità relativa minore.
- Le prove di laboratorio mostrano che la riduzione del grado di saturazione incrementa la resistenza a liquefazione della sabbia mettendo in luce l'efficacia dell'intervento da effettuare in sito.
- La misura in situ delle velocità delle onde compressione permette di monitorare la parziale saturazione indotta atta alla riduzione del rischio di liquefazione del sito in esame.
- Il modello presenta una rigidezza superiore al fenomeno sperimentale, costituendo una forte limitazione per la previsione delle deformazioni per il caso studio in esame.
- Buona approssimazione dei risultati numerici con i valori sperimentali delle sovrappressioni.
- Individuazione di relazioni tra i diversi parametri di calibrazione, che ci consentono di simulare il comportamento meccanico di terreni con gradi di saturazione diversi da quelli da provati.

Grazie per l'attenzione!!!