#### UNIVERSITA' DEGLI STUDI DI NAPOLI "FEDERICO II"



Scuola Politecnica e delle Scienze di Base Dipartimento di Ingegneria Civile, Edile ed Ambientale

#### CORSO DI LAUREA MAGISTRALE IN INGEGNERIA PER L'AMBIENTE ED IL TERRITORIO

Modellazione dell'interdipendenza tra rete idrica e rete elettrica nell'analisi del rischio sismico a scala urbana

Relatore Ch.mo Prof. Ing. Massimiliano Fabbricino

Correlatore Dott.ssa Grazia Fattoruso Candidata Antonella De Rosa Matr. M67/000297





#### OGGETTO DELLA TESI

Mettere a punto una metodologia per la modellazione dell'interdipendenza tra infrastrutture critiche quali la rete idrica e quella elettrica in condizioni di funzionamento straordinarie derivanti dall'occorrenza di eventi sismici





# **OBIETTIVI**

- Mettere a punto una metodologia per la definizione di scenari di funzionamento della rete idrica in funzione della rete elettrica in situazioni straordinarie come l'occorrenza di un evento sismico di specifiche caratteristiche;
- ➤ Modellare il funzionamento idraulico della rete idrica in corrispondenza di ciascuno scenario
- ➤ Valutare gli impatti degli scenari di funzionamento sulla popolazione servita e definire sotto-scenari



# INFRASTRUTTURA CRITICA

- ✓ Sistema che comprende reti di utilità (energia, acqua, telecomunicazioni) essenziale per la salute, la sicurezza ed il benessere economico e sociale dei cittadini
- ✓ Il danneggiamento o la distruzione può avere un impatto significativo sui servizi erogati

➤ I terremoti sono tra gli eventi naturali che possono significativamente impattare sulle performance delle IC e sui servizi da esse erogati



# INFRASTRUTTURA CRITICA

In caso di terremoto, un elemento di un'infrastruttura può danneggiarsi in due modi:

- ✓ Direttamente tramite danni strutturali dovuti alla forza sismica
- ✓ Indirettamente per l'interdipendenza con un'altra IC (e.g. l'interruzione di energia elettrica comporta il non funzionamento dell'impianto di sollevamento provocando un malfunzionamento della rete di distribuzione)

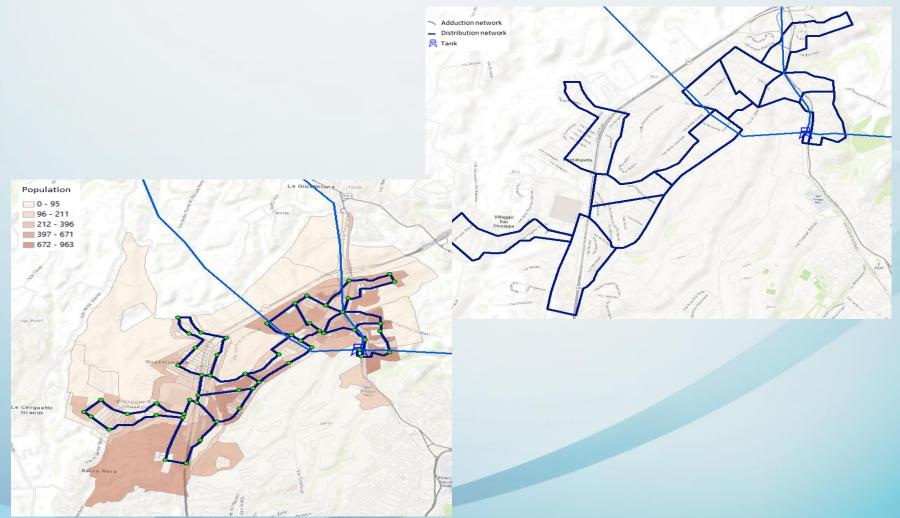


#### CASO STUDIO



#### Rete acquedottistica gestita da ACEA ATO2

#### RETE DI ADDUZIONE DEL PESCHIERA-CAPORE

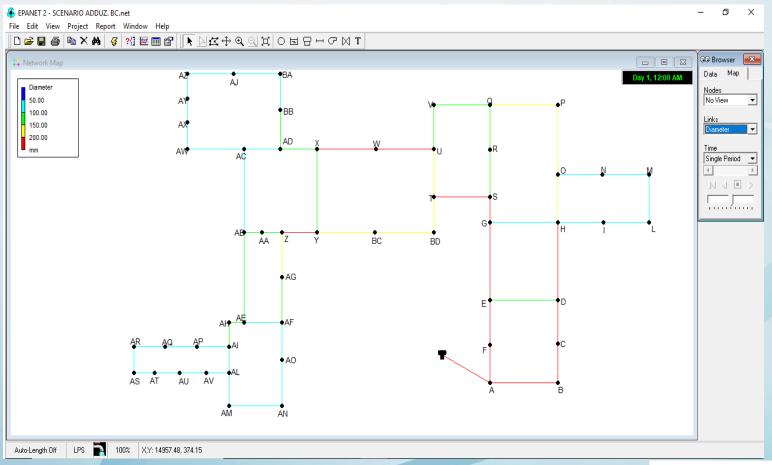





# CASO STUDIO



#### RETE DI DISTRIBUZIONE






#### MODELLAZIONE IDRAULICA



➤ Della rete di distribuzione tramite EPANET

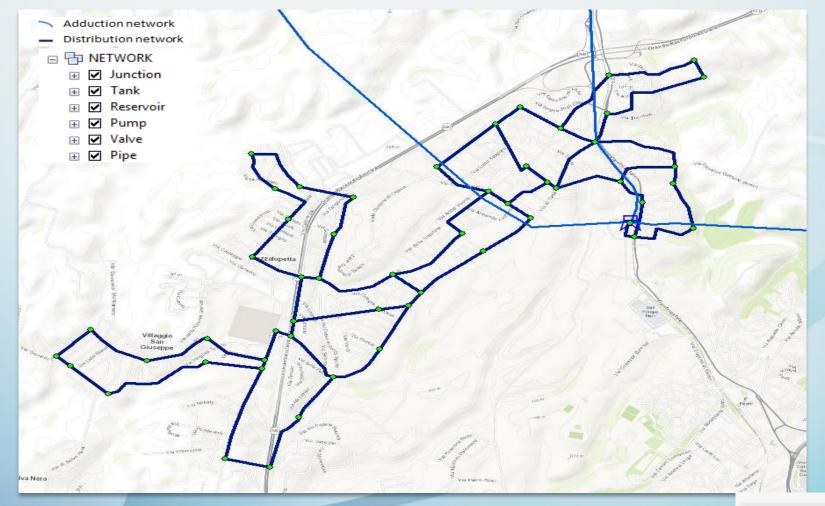


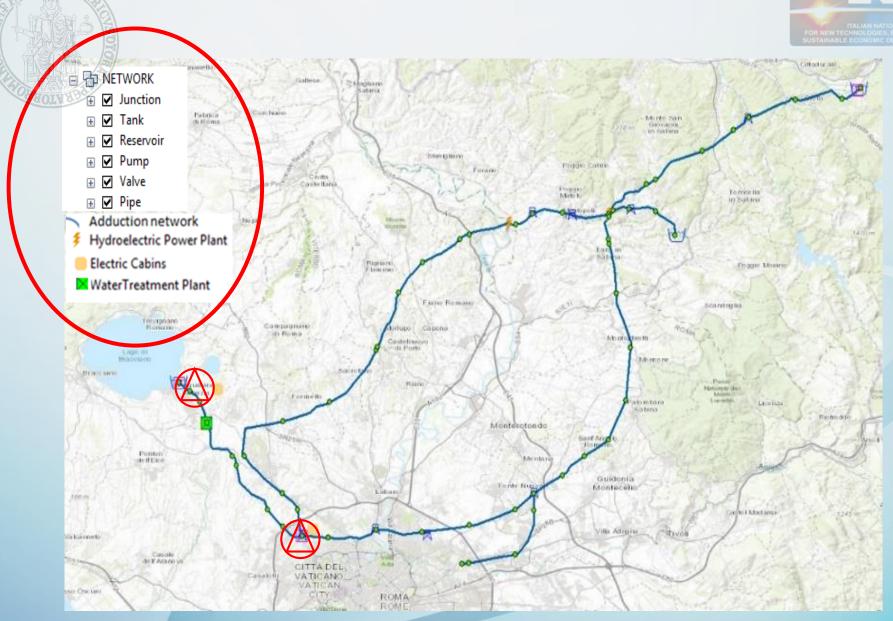


# MODELLAZIONE IDRAULICA



#### > Della rete di distribuzione tramite EPANET


| III Network Table - Nodes |                |               |           |               | × |
|---------------------------|----------------|---------------|-----------|---------------|---|
| Node ID                   | Elevation<br>m | Demand<br>LPS | Head<br>m | Pressure<br>m | ^ |
| June B                    | 104            | 1.34          | 176.37    | 72.37         |   |
| June A                    | 128.80         | 1.70          | 179.01    | 50.21         |   |
| June F                    | 135.7          | 1.12          | 177.06    | 41.36         |   |
| Junc E                    | 138            | 2.78          | 175.18    | 37.18         |   |
| June D                    | 132.3          | 3.24          | 173.54    | 41.24         |   |
| June C                    | 111            | 0.82          | 174.92    | 63.92         |   |
| June G                    | 130            | 4.81          | 167.99    | 37.99         |   |
| June H                    | 137            | 6.32          | 170.97    | 33.97         |   |
| Junc O                    | 144.6          | 2.15          | 169.12    | 24.52         |   |
| June N                    | 135            | 1.67          | 164.91    | 29.91         |   |
| June M                    | 133            | 1.88          | 155.39    | 22.39         |   |
| Junc L                    | 129            | 2.89          | 155.45    | 26.45         |   |
| June I                    | 135            | 1.42          | 160.73    | 25.73         |   |
| Junc P                    | 141            | 1.19          | 168.11    | 27.11         |   |
| Junc Q                    | 138.5          | 2.48          | 167.52    | 29.02         |   |
| Junc R                    | 144.6          | 2.07          | 167.46    | 22.86         |   |
| Junc S                    | 129            | 1.93          | 167.65    | 38.65         |   |
| Junc T                    | 129            | 2.10          | 163.66    | 34.66         |   |
| Junc U                    | 119.5          | 1.70          | 160.49    | 40.99         |   |
| June V                    | 118.6          | 1.14          | 162.39    | 43.79         |   |
| June BD                   | 126.2          | 0.63          | 162.67    | 36.47         |   |
| June BC                   | 116            | 1.62          | 159.05    | 43.05         | v |

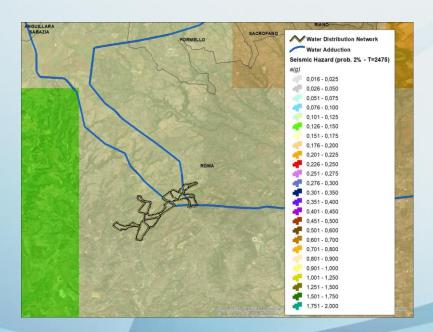

| Link ID  | Length<br>m | Diameter<br>mm | Flow<br>LPS | Velocity<br>m/s |
|----------|-------------|----------------|-------------|-----------------|
| Pipe A-B | 537         | 200            | 29.26       |                 |
| Pipe B-C | 325         | 200            | 27.92       | 0.89            |
| Pipe C-D | 325         | 200            | 27.10       | 0.86            |
| Pipe E-D | 486         | 100            | 3.82        | 0.49            |
| Pipe F-E | 320         | 250            | 57.81       | 1.18            |
| Pipe A-F | 320         | 250            | 58.93       | 1.20            |
| Pipe E-G | 490         | 200            | 51.21       | 1.63            |
| Pipe H-G | 556         | 50             | 0.76        | 0.39            |
| Pipe D-H | 584         | 200            | 27.68       | 0.88            |
| Pipe H-I | 595         | 80             | 4.90        | 0.98            |
| Pipe I-L | 595         | 80             | 3.48        | 0.69            |
| Pipe L-M | 200         | 80             | 0.59        | 0.12            |
| Pipe M-N | 650         | 50             | -1.29       | 0.66            |
| Pipe O-N | 650         | 80             | 2.96        | 0.59            |
| Pipe H-O | 287         | 150            | 15.69       | 0.89            |
| Pipe O-P | 337         | 150            | 10.59       | 0.60            |
| Pipe P-Q | 247         | 150            | 9.40        | 0.53            |
| Pipe Q-R | 375         | 100            | 0.69        | 0.09            |
| Pipe S-T | 368         | 200            | 43.86       | 1.40            |
| Pipe T-U | 325.5       | 150            | 19.44       | 1.10            |
| Pipe V-U | 325.5       | 100            | 5.08        | 0.65            |
| Pipe Q-V | 594         | 100            | 6.22        | 0.79            |

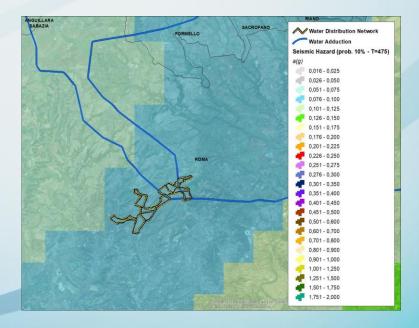
# MODELLAZIONE IDRAULICA



#### della rete di adduzione tramite INFOWATER






# VALUTAZIONE DELLA VULNERABILITA' SISMICA



➤ ANALISI DI PERICOLOSITÀ: si assegna ad ogni tratto della rete il valore della PGA in termini di a<sub>g</sub> derivato dalle mappe di pericolosità sismica con probabilità di superamento in 50 anni pari a 10% e 2% e tempo di ritorno rispettivamente di 475 e 2500 anni (Fonte dei dati: INGV)







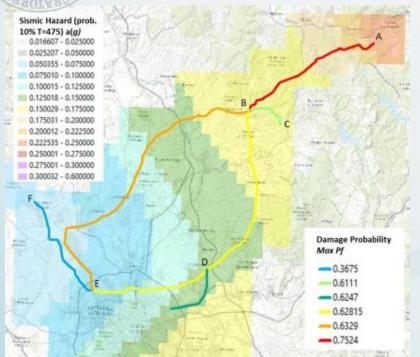
# VALUTAZIONE DELLA VULNERABILITA' SISMICA -2



- > ANALISI DI VALUTAZIONE DEL DANNEGGIAMENTO FISICO
  - ✓ si assegna ad ogni tratto il valore del RR (Repair Rate), valore stimato dalla funzione di fragilità di Toprak (2007)

$$Log(RR) = 1.3 \cdot log(PGA) - 0.6$$

✓ Calcolati i valori di RR, ad ogni segmento di condotta è associata una probabilità di danneggiamento:


$$P_f = 1 - EXP(-RR \cdot L)$$

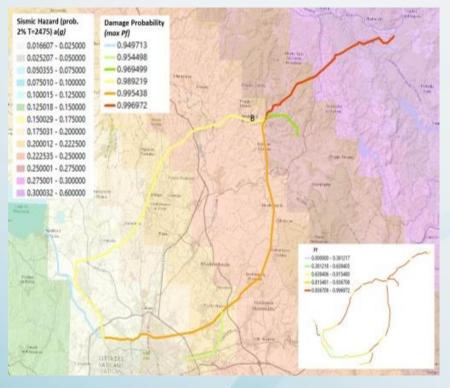
dove L è la lunghezza del tratto, RR è il Repair Rate ovvero le riparazioni a km,  $P_f$  è la probabilità di rottura



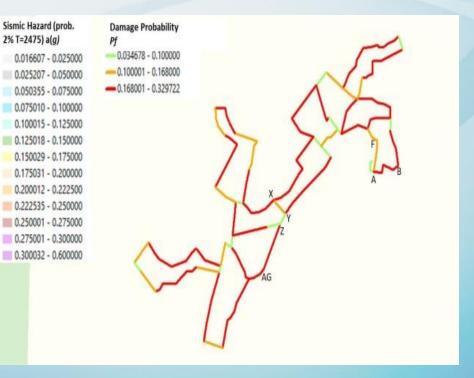
# VALUTAZIONE DELLA VULNERABILITA' SISMICA -3






Mappe del danno per un periodo di ritorno T di 475 anni.






# VALUTAZIONE DELLA VULNERABILITA' SISMICA 4





Mappe del danno per un periodo di ritorno T di 2475 anni.







- Sono stati identificati 12 scenari di malfunzionamento delle reti elettrica ed idraulica, considerando:
  - ✓ rottura delle singole condotte
  - ✓ interruzione del servizio elettrico
  - ✓ combinazioni tra le due situazioni
- Ciascuno scenario è stato caratterizzato per una probabilità di occorrenza P<sub>failure</sub> calcolata a partire dal rischio di danneggiamento dei singoli elementi
- Per ciascuno scenario sono state in ultimo determinate le variazioni di portata da associare allo schema idraulico





| CAROLAR So.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                          |                           |               |                 |                |                     |                      |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------|---------------------------|---------------|-----------------|----------------|---------------------|----------------------|----------------------|
| OM II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N° scenari |                          | Damage Type               | Pipeline      | Connected       |                | Failure             | Failure              | Q <sub>m</sub> (I/s) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Infrastructure           |                           |               | population<br>N | Volume<br>(mc) | Probability<br>T475 | Probability<br>T2500 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |                          | Break pipeline            | AB            | N               | -              | 0.7524              | 0.9969               | 16.2                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Network<br>Adduction     | Bre                       | ak pipeline   | N               |                | 0.7524              | 0                    | 0060                 |
| 1 Shirts 1 S |            |                          | Dic                       | ak pipelirie  | IN              |                | 0.7524              | 0.                   | 9969                 |
| Total Control Samuel Control Samuel Control Co |            | Network                  |                           |               | N               |                |                     |                      |                      |
| Three ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | Adduction                | Bre                       | ak pipeline   |                 |                | 0.6111              | 0.                   | 9694                 |
| Green B Every                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | Network                  |                           |               | N               |                |                     |                      |                      |
| The state of the s |            |                          | Bre                       | ak pipeline   | + 15%N          |                | 0.6220              |                      | 0000                 |
| c 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Adduction                | Die                       | ar hiheiii ie |                 |                | 0.6329              | 0.                   | 9892                 |
| frage Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Network                  |                           |               | N               | 5              |                     |                      |                      |
| 19 year Surviya Anger Surviya  |            | Adduction                | Bre                       | ak pipeline   |                 |                | 0.6281              | 0.                   | 9954                 |
| Office of the second of the se |            | Network                  |                           |               | N               | 2              |                     |                      |                      |
| Tan Santa Sa |            | Treework                 | power                     | tank at       |                 |                |                     |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                          | interruption              | node E        |                 |                |                     |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8          | Distribution network     | Break<br>pipeline         | A-B           | N               | -              | 0.1531              | 0.3297               | 48.6                 |
| The D County Cou | 9          | Distribution             | Break                     | A-F           | N               | -              | 0.080               | 0.1680               | 48.6                 |
| por Halam par Seria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10         | network<br>Distribution  | pipeline<br>Break         | X-Y+AG-Z      | N               | -              | 0.1531              | 0.3297               | 48.6                 |
| A1 (10 Aliene (5) (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                          | pipeline                  |               |                 |                |                     |                      |                      |
| GITARE STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11         |                          | Break                     | A-B + Tank    | N               | 500            | 0.1531              | 0.3297               | 5.78                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | network&<br>filling tank | pipeline&<br>Storage tank | at Node E     |                 |                |                     |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12         | Distribution             | Break                     | A-B + Tank    | N               | 250            | 0.1531              | 0.3297               | 2.89                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | network& half            |                           | at node E     |                 |                |                     |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | filling tank             | Storage tank              |               |                 |                |                     |                      |                      |

... gli scenari legati al malfunzionamento dei tratti della rete di adduzione, risultano più probabili a causa, principalmente, degli alti valori della PGA (probabilità media di occorrenza pari a 65% nel caso di T=475 anni e pari al 98% nel caso di T=2475 anni)





| SOLAR  | N° so | enario Water C<br>Infrastructure | Damage Type          |                   | onnected<br>opulation | Tank<br>Volume<br>(mc) | Failure<br>Probability<br>T475 | Failure<br>Probability<br>T2500 | Q <sub>m</sub> (I/s) |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------|----------------------|-------------------|-----------------------|------------------------|--------------------------------|---------------------------------|----------------------|----|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     |                                  | Rreak nineline       | Ap Ap             | N                     | -                      | 0.7524                         | 0.9969                          | 16.2                 |    |
| Meanwhit Substance States Substance States Substance Sub |       | Adduction                        | DI                   | eak pipeline      |                       |                        | 0.6444                         | 0.0004                          | 16.                  | .2 |
| 100 Service - 10 |       | Network                          |                      |                   | N                     | -                      | 0.6111                         | 0.9694                          |                      |    |
| Share share                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | Adduction                        | Ві                   | eak pipeline      | N                     | -                      | 0.6329                         | 0.9892                          | 32.                  | .4 |
| Faces (Constant)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Network                          |                      |                   | N                     | -                      | 0.6281                         | 0.9954                          | 1                    |    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Adduction                        | Ві                   | eak pipeline      | 15%N                  | -                      | -                              | -                               | 12.:                 | 15 |
| Mark Pinner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | Network                          |                      |                   |                       |                        |                                |                                 |                      |    |
| Transmission for the large of t |       | Adduction                        | Ві                   | eak pipeline      | N                     | 500                    | -                              | -                               | 36.4                 | 45 |
| OHP Uses and the Control of the Cont |       | Network                          |                      |                   |                       |                        |                                |                                 | _                    |    |
| Paris States Sta |       | · ·                              | oower<br>nterruption | tank at<br>node E | <b>─</b> N            | 250                    | -                              | -                               | 2.05                 | ij |
| Secretary Secret | 8     |                                  | Break<br>Dipeline    | А-В               | N                     | -                      | 0.1531                         | 0.3297                          | 48.6                 |    |
| D Grands<br>Blooking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9     | Distribution B                   | Break<br>Dipeline    | A-F               | N                     | -                      | 0.080                          | 0.1680                          | 48.6                 |    |
| The Alexan Court Waters and Court Water W | 10    | Distribution B                   | Break<br>Dipeline    | X-Y+AG-Z          | N                     | -                      | 0.1531                         | 0.3297                          | 48.6                 |    |
| Curtares on Cartares on Cartar | 11    | ·                                | Break                | A-B + Tank        | N                     | 500                    | 0.1531                         | 0.3297                          | 5.78                 |    |

... la rottura lungo i tratti della rete di adduzione impone una riduzione del valore della portata media che viene immessa nella rete di distribuzione studiata in corrispondenza del serbatoio del centro idrico di Ottavia

network&

filling tank

Distribution

filling tank

pipeline&

Break

network& half |pipeline&

Storage tank

Storage tank

at Node E

A-B + Tank

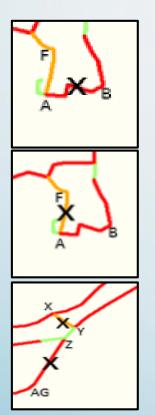
at node E

0.1531

0.3297

2.89



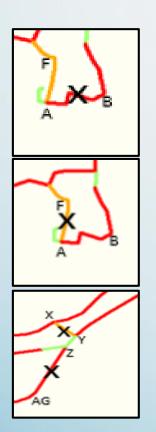



| WOTH NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N° scenario | Water                         | Damage Type               | Pipeline                | Connected  | Tank   | Failure     | Failure     | 0 (1/s)              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------|---------------------------|-------------------------|------------|--------|-------------|-------------|----------------------|
| ACT A C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N Scenario  | Infrastructure                |                           | Pipelille               | population | Volume | Probability | Probability | Q <sub>m</sub> (I/s) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                               |                           |                         | N          |        | T475        | T2500       | _                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | Adduction<br>Network          | Break pipeline            | AB                      | N          | -      | 0.7524      | 0.9969      | 16.2                 |
| There is a second of the secon | 2           | Adduction<br>Network          | Break pipeline            | ВС                      | N          | -      | 0.6111      | 0.9694      | 32.4                 |
| State 1 States A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3           | Adduction<br>Network          | Break pipeline            | BE superior             | N          | -      | 0.6329      | 0.9892      | 12.15                |
| Salanhi Alima Salanhi  | 4           | Adduction                     | Break pipeline            | BE inferior             | N          | -      | 0.6281      | 0.9954      | 36.45                |
| To the second se | Adduc       | tion                          | Electri                   | С                       | N + 15%N   | -      | -           | -           | 48.6                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Netwo       | ork                           | power                     |                         |            |        |             |             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                               | interru                   | ıption                  | N          | 500    | -           | -           |                      |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Storag      | ge tank                       | Electri                   | <u> </u>                |            |        |             |             | 5.78                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Storag      | c tank                        |                           |                         | N          | 250    | -           | -           |                      |
| Forting the second seco |             |                               | power                     |                         |            |        |             |             |                      |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                               | interru                   | ıption                  | N          | -      | 0.1531      | 0.3297      |                      |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Storag      | ge tank                       | Electri                   | С                       | N          | -      | 0.080       | 0.1680      | 2.89                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                               | power                     |                         | N          | -      | 0.1531      | 0.3297      |                      |
| AND CONTACTOR OF THE CO |             |                               | interru                   |                         | N          | 500    | 0.1531      | 0.3297      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | network&<br>filling tank      | pipeline&<br>Storage tank | at Node E               |            |        |             |             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12          | Distribution<br>network& half | Break<br>pipeline&        | A-B + Tank<br>at node E | N          | 250    | 0.1531      | 0.3297      | 2.89                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | filling tank                  | Storage tank              |                         |            |        |             |             |                      |

... nello scenario 5 la portata immessa in rete rimane invariata, pari ad una portata media di 48.6 l/s; negli scenari 6 e 7, possibile immettere in rete una portata si soli 5.78 l/s ma con una dotazione idrica scarsissima





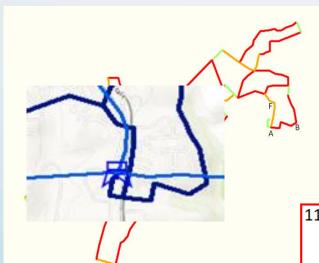



|      | N19      | rio Water            | Damage Type                       | Din alina                 | C                    | Toul           | Failure     | Failure     | 0 (1/-)              |
|------|----------|----------------------|-----------------------------------|---------------------------|----------------------|----------------|-------------|-------------|----------------------|
|      | N° scena | Infrastructure       |                                   | Pipeline                  | Connected population | Tank<br>Volume | Probability | Probability | Q <sub>m</sub> (I/s) |
|      |          | minastructure        |                                   |                           | N                    | (mc)           | T475        | T2500       |                      |
|      | 1        | Adduction<br>Network | Break pipeline                    | AB                        | N                    | -              | 0.7524      | 0.9969      | 16.2                 |
|      | 2        | Adduction<br>Network | Break pipeline                    | ВС                        | N                    | -              | 0.6111      | 0.9694      | 32.4                 |
|      | 3        | Adduction<br>Network | Break pipeline                    | BE superior               | N                    | -              | 0.6329      | 0.9892      | 12.15                |
|      | 4        | Adduction<br>Network | Break pipeline                    | BE inferior               | N                    | -              | 0.6281      | 0.9954      | 36.45                |
|      | 5        | Adduction<br>Network | Electric<br>power<br>interruption | FE                        | N + 15%N             | -              | -           | -           | 48.6                 |
|      | 6        | Storage tank         | Electric<br>power<br>interruption | filling tank<br>at node E | N                    | 500            | -           | -           | 5.78                 |
|      | 7        | Storage tank         | Electric<br>power                 | Half filling<br>tank at   | N                    | 250            | -           | -           | 2.89                 |
| 8    | Dis      | stribution           | Breal                             |                           | N                    | 0.15           | 531         | 0.329       | 7                    |
|      | ne       | twork                | pipel                             | ine                       | N                    |                |             |             |                      |
| 9    |          | stribution           | Breal                             |                           | N                    | 0.0            | 080         | 0.168       | 0                    |
|      |          | twork                | pipel                             |                           | N                    |                |             |             |                      |
| 10   |          | stribution           | Breal                             |                           |                      | 0.1            | 531         | 0.329       | 7                    |
|      | ne       | twork                | pipel                             | ine                       | N                    |                |             |             |                      |
| - // |          | filling tank         | Storage tank                      | de Hode E                 |                      |                |             |             |                      |

... gli scenari 8, 9 e 10, legati al malfunzionamento della rete di distribuzione, appaiono poco probabili a causa dei modesti valori della PGA (probabilità media di occorrenza pari a 13% nel caso di T=475 anni e pari al 28% nel caso di T=2475 anni)








|    | N° s | scenario | Water                | Damage Type              | Pipeline     | Connected   | Tank | Failure     | Failure     | Q <sub>m</sub> (I/s) |
|----|------|----------|----------------------|--------------------------|--------------|-------------|------|-------------|-------------|----------------------|
|    |      |          | Infrastructure       |                          |              |             |      | Probability | Probability |                      |
|    |      |          |                      | Dunals ninalina          | 4.5          | N           | (mc) | T475        | T2500       | 15.2                 |
|    | 1    |          | Adduction<br>Network | Break pipeline           | AB           | N           | -    | 0.7524      | 0.9969      | 16.2                 |
|    | 2    |          | Adduction            | Break pipeline           | BC           | N           | _    | 0.6111      | 0.9694      | 32.4                 |
|    |      |          | Network              |                          |              | .,          |      | 0.0222      |             |                      |
|    | 3    |          | Adduction            | Break pipeline           | BE superior  | N           | -    | 0.6329      | 0.9892      | 12.15                |
|    |      |          | Network              |                          |              |             |      |             |             |                      |
|    | 4    |          | Adduction<br>Network | Break pipeline           | BE inferior  | N           | -    | 0.6281      | 0.9954      | 36.45                |
|    | 5    |          | Adduction            | Electric                 | FE           | N + 15%N    |      | _           | _           | 48.6                 |
|    |      |          | Network              | power                    | ''-          | 14 1 13/014 |      |             |             | 40.0                 |
|    |      |          |                      | interruption             |              |             |      |             |             |                      |
|    | 6    |          | Storage tank         | Electric                 | filling tank | N           | 500  | -           | -           | 5.78                 |
|    |      |          |                      | power                    | at node E    |             |      |             |             |                      |
|    | 7    |          | Storage tank         | interruption<br>Electric | Half filling | N           | 250  | -           | _           | 2.89                 |
|    |      |          | Storage talik        | power                    | tank at      | IN          | 230  |             | -           | 2.09                 |
|    |      | Dictri   | ibution              | Breal                    | ,            | <b>-</b>    |      |             |             |                      |
| )  |      | וואנו    | ibution              | Dieai                    | (            | N           | -    | 0.1531      | 0.3297      | 48.6                 |
|    |      | netw     | ork                  | pipel                    | ine          |             |      |             |             | 10.0                 |
|    |      |          |                      | <del></del>              |              | N           | -    | 0.080       | 0.1680      |                      |
| )  |      | Distr    | ibution              | Breal                    | (            | N           | _    | 0.1531      | 0.3297      | 48.6                 |
|    |      | netw     | ork                  | pipel                    | ine          | "           |      | 0.1331      | 0.5257      | 10.0                 |
|    |      |          |                      | <del></del>              |              | N           | 500  | 0.1531      | 0.3297      |                      |
| .0 |      | Distr    | ibution              | Breal                    | (            |             |      |             |             | 48.6                 |
|    |      | netw     | ork                  | pipel                    | ino          | N           | 250  | 0.1531      | 0.3297      | 10.0                 |
|    |      | netw     | OIK                  | pipei                    | IIIE         | IN          | 250  | 0.1531      | 0.3297      |                      |
| A  |      |          | filling tank         | Storage tank             | at node L    |             |      |             |             |                      |

... la rottura lungo i tratti della rete di distribuzione non incide sul valore di portata da immettere in rete, pari quindi a 48.6 l/s







|   | Water                                   | Damage Type    | Pipeline     | Connected  | Tank | Failure     | Failure     | <u>Q</u> <sub>m</sub> (I/s) |
|---|-----------------------------------------|----------------|--------------|------------|------|-------------|-------------|-----------------------------|
|   | Infrastructure                          |                |              | population |      | Probability | Probability |                             |
|   |                                         |                |              | N          | (mc) | T475        | T2500       |                             |
| 1 | Adduction                               | Break pipeline | AB           | N          | -    | 0.7524      | 0.9969      | 16.2                        |
|   | Network                                 |                |              |            |      |             |             |                             |
| 2 | Adduction                               | Break pipeline | BC           | N          | -    | 0.6111      | 0.9694      | 32.4                        |
|   | Network                                 |                |              |            |      |             |             |                             |
| 3 | Adduction                               | Break pipeline | BE superior  | N          | -    | 0.6329      | 0.9892      | 12.15                       |
|   | Network                                 |                |              |            |      |             |             |                             |
| 4 | Adduction                               | Break pipeline | BE inferior  | N          | -    | 0.6281      | 0.9954      | 36.45                       |
|   | Network                                 |                |              |            |      |             |             |                             |
| 5 | Adduction                               | Electric       | FE           | N + 15%N   | -    | -           | -           | 48.6                        |
|   | Network                                 | power          |              |            |      |             |             |                             |
|   |                                         | interruption   |              |            |      |             |             |                             |
| 6 | Storage tank                            | Electric       | filling tank | N          | 500  | -           | -           | 5.78                        |
|   |                                         | power          | at node E    |            |      |             |             |                             |
|   |                                         | interruption   |              |            |      |             |             |                             |
| 7 | Storage tank                            | Electric       | Half filling | N          | 250  | -           | -           | 2.89                        |
|   |                                         | power          | tank at      |            |      |             |             |                             |
|   |                                         | interruption   | node E       |            |      |             |             |                             |
| 8 | Distribution                            | Break          | A-B          | N          | -    | 0.1531      | 0.3297      | 48.6                        |
|   | network                                 | pipeline       |              |            |      |             |             |                             |
| 9 | Distribution                            | Break          | A-F          | N          | -    | 0.080       | 0.1680_     | 48.6                        |
| • | Distrib                                 | ution          | Break        |            |      |             |             | F 70                        |
|   | ווווווווווווווווווווווווווווווווווווווו | ation          | Dicak        |            | -    | 0.1531      | 0.3297      | 5.78                        |
|   |                                         | 1.0            |              | 0          | I    | 1           |             |                             |

11 Distribution Break
network& pipeline&
filling tank Storage tank
12 Distribution Break
network& half pipeline&
filling tank Storage tank

0.1531 0.3297 2.89

0.3297

0.1531

250

... gli scenari 11 e 12 combinano la rottura del tratto AB della rete di distribuzione al mancato funzionamento della rete elettrica. La portata immessa in rete è uguale a quella vista nel caso degli scenari 6 e 7. Tra i due eventi congiunti quindi, il più critico è il mancato funzionamento della rete elettrica

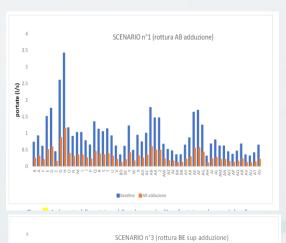


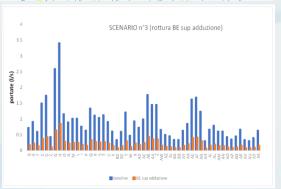
#### ANALISI DI AFFIDABILITA'

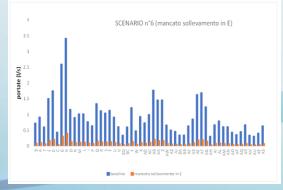
La prestazione del sistema viene analizzata attraverso un indice R basato sul rapporto tra i volumi effettivamente erogati  $W_E$  e quelli richiesti  $W_R$ 

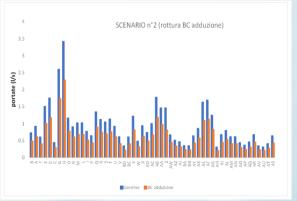
$$R = \frac{W_E}{W_R}$$

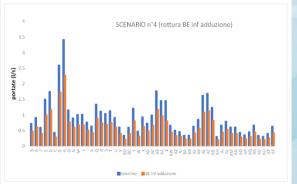
in cui  $W_E$  è il volume erogato per ciascuno scenario e  $W_R$  è il volume della domanda corrispondente allo scenario baseline

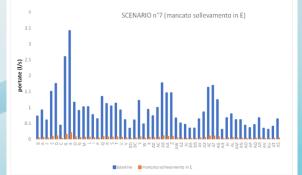

| N°scenario | R    |
|------------|------|
| 1          | 0,33 |
| 2          | 0,66 |
| 3          | 0,25 |
| 4          | 0,75 |
| 5          | -    |
| 6          | 0,12 |
| 7          | 0,06 |
| 8          | ı    |
| 9          | -    |
| 10         | -    |
| 11         | 0,12 |
| 12         | 0,06 |





# ANALISI DELLE PORTATE





Confronto, per ciascun nodo, tra le portate erogate nello scenario di baseline e le portate erogate negli scenari di simulazione 1-4, 6, 7

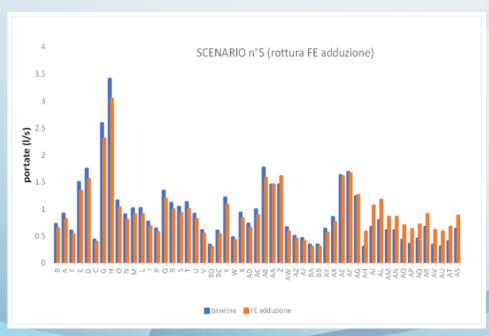


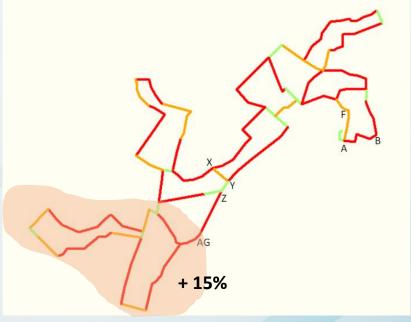




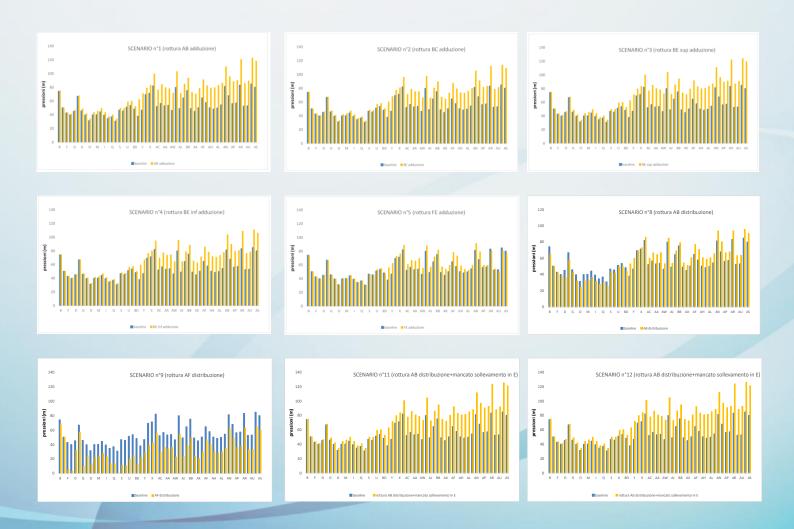




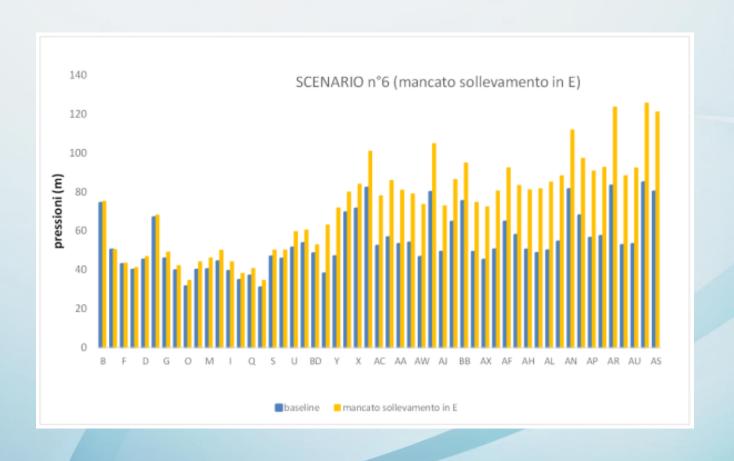


#### ANALISI DELLE PORTATE



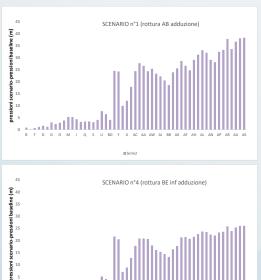

#### SCENARIO 5 – INTERRUZIONE SERVIZIO ELETTRICO BRACCIANO

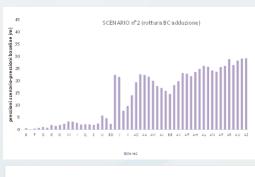
...lo scenario 5 è caratterizzato da una portata immessa pari a quella media considerata nello scenario di baseline ma allo stesso tempo presenta una numerosità differente degli abitanti serviti

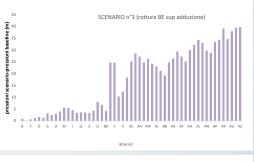





Confronto, per ciascun nodo, tra le pressioni nodali dello scenario di baseline e le pressioni nodali degli scenari di simulazione 1-7

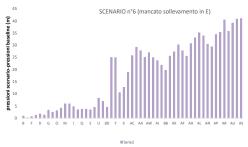




Confronto, per ciascun nodo, tra le pressioni nodali dello scenario di baseline e le pressioni nodali degli scenari di simulazione 1-7



... si rappresentano le differenze di pressione che mettono in evidenza gli scenari più critici in termini di stress statico


















...differenze di pressione



La maggiore differenza di pressione è osservata a valle del nodo Y nel settore occidentale della rete



## PERFORMANCE DEGLI SCENARI

Gli scenari a cui corrispondono le prestazioni più elevate sono gli scenari 2 e 4 per i quali si hanno le maggiori portate immesse in rete.

| N°scenario | R    |
|------------|------|
| 1          | 0,33 |
| 2          | 0.66 |
| 4          | 0.75 |
| 6          | 0,12 |
| 7          | 0,06 |
| 8          | -    |
| 9          | -    |
| 10         | -    |
| 11         | 0,12 |
| 12         | 0,06 |
|            |      |



#### PERFORMANCE DEGLI SCENARI

...prestazioni particolarmente basse sono affidate agli scenari 6 e 7, ovvero a quelli corrispondenti al mancato funzionamento dell'impianto di sollevamento a servizio del serbatoio di Ottavia.

|   | N°scenario | R            |
|---|------------|--------------|
|   | 1          | 0,33         |
|   | 2          | 0,66         |
|   | 3          | 0,25         |
| Н | 4          | 0.75         |
|   | 6          | 0.12         |
|   | 7          | 0.06         |
|   | 8          | -            |
|   | 9          | -            |
|   |            |              |
|   | 10         | -            |
|   | 10         | 0,12         |
|   |            | 0,12<br>0,06 |

Le portate esigue sono legate alla nulla capacità di compenso del serbatoio sopraelevato a servizio dell'area urbana





| N° scenario | Connected<br>Nab | $\delta(I/s*d)$ |
|-------------|------------------|-----------------|
| 1           | 27823            | 50              |
| 2           | 27823            | 101             |
| 3           | 27823            | 38              |
| 4           | 27823            | 113             |
| 5           | 31223            | 134             |
| 6           | 27823            | 18              |
| 7           | 27823            | 9               |
| 8           | -                | -               |
| 9           | -                | -               |
| 10          | -                | -               |
| 11          | 27823            | 18              |
| 12          | 27823            | 9               |

Per ogni scenario e per il corrispondente numero di abitanti servito, viene fornito il valore della dotazione idrica che è possibile assegnare

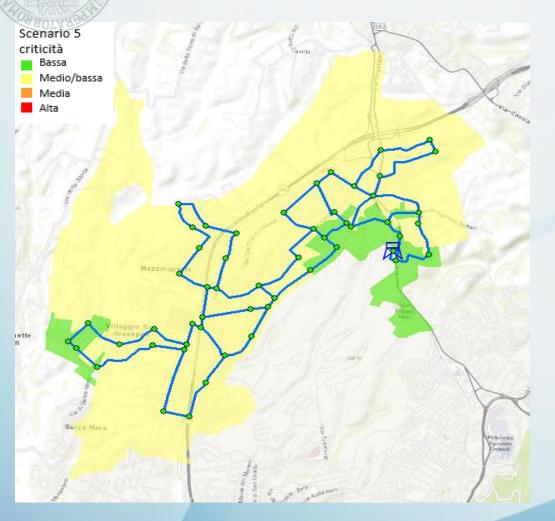


# PERFORMANCE DEGLI SCENARI



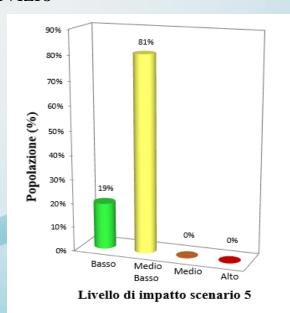
| N° scenario | Nab   | % <u>Nab</u> |
|-------------|-------|--------------|
| 1           | 9331  | 34           |
| 2           | 18662 | 67           |
| 3           | 6998  | 25           |
| 4           | 20995 | 75           |
| 5           | -     | -            |
| 6           | 3329  | 12           |
| 7           | 1665  | 6            |
| 8           | -     | -            |
| 9           | -     | -            |
| 10          | -     | -            |
| 11          | 3329  | 12           |
| 12          | 1665  | 6            |

Per ogni scenario viene riportata la % di abitanti che possono essere serviti con una dotazione idrica accettabile

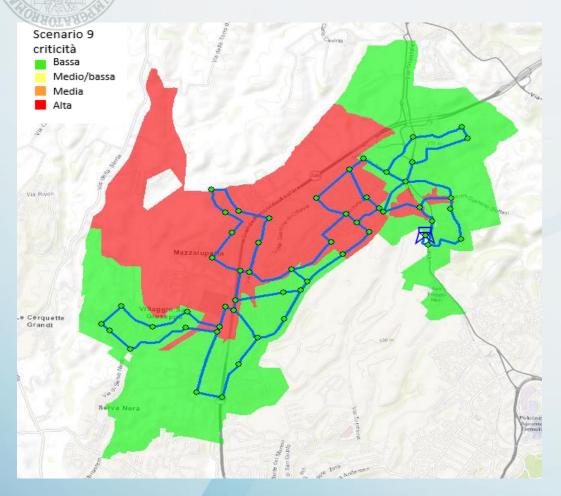






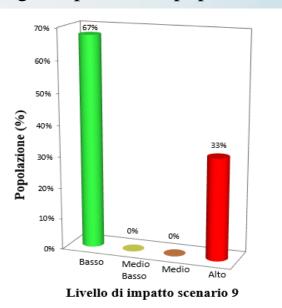


| Livello     | Colore | Significato                                                                                                                                                                                                                             |  |
|-------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| criticità   |        |                                                                                                                                                                                                                                         |  |
| Basso       |        | Il livello di criticità è basso. Questo livello è associato a riduzioni di pressione nei nodi della rete che variano nell'intervallo [-20; 0], rispetto ad una situazione ordinaria. L'erogazione del servizio idrico resta inalterato. |  |
| Medio/basso |        | Il livello di criticità è medio/basso. Questo livello è associato a incrementi di pressione nei nodi della rete che variano nell'intervallo [0; +20], rispetto ad una situazione ordinaria                                              |  |
| Medio       |        | Il livello di criticità è medio. Questo è associato a<br>incrementi di pressione nei nodi della rete che<br>variano nell'intervallo [+20; +40], rispetto ad una<br>situazione ordinaria.                                                |  |
| Alto        |        | Il livello di criticità è alto. Questo è associato a<br>riduzioni di pressione nei nodi della rete che variano<br>nell'intervallo [-40; -20], rispetto ad una situazione<br>ordinaria. L'erogazione è pregiudicata.                     |  |






Lo scenario 5 è caratterizzato da un impatto sulla popolazione minore in confronto agli altri scenari, con livello di criticità che varia da basso a medio/basso

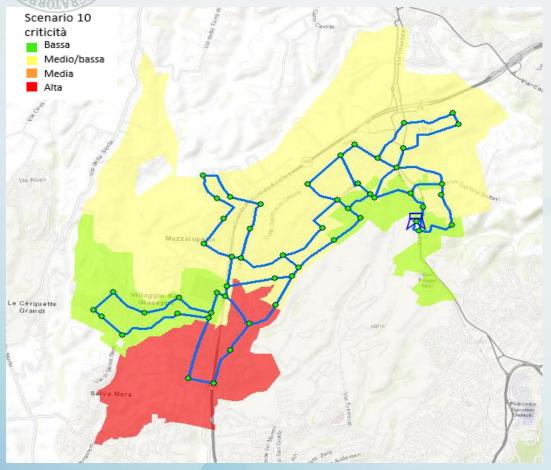
Le riduzioni di pressione non pregiudicano l'erogazione del servizio





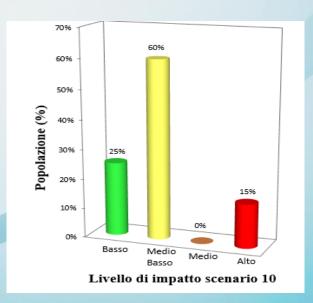



Nello scenario 9, le pressioni sono in maniera generalizzata minori su tutta la rete dovute alla rottura di uno dei tratti principali della rete di distribuzione, ovvero quello prossimo al serbatoio


Piuttosto severi e diffusi arealmente sono gli impatti sulla popolazione

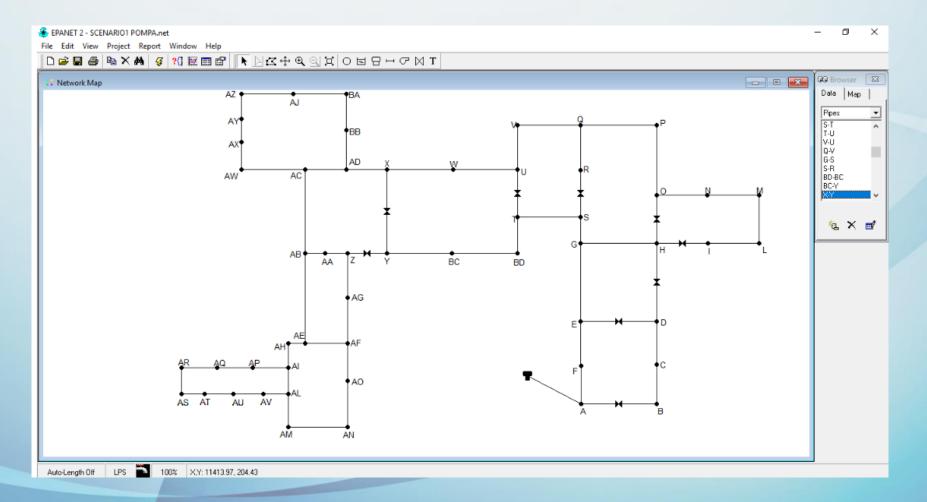


# STATE OF THE STATE


#### IMPATTO SULLA POPOLAZIONE

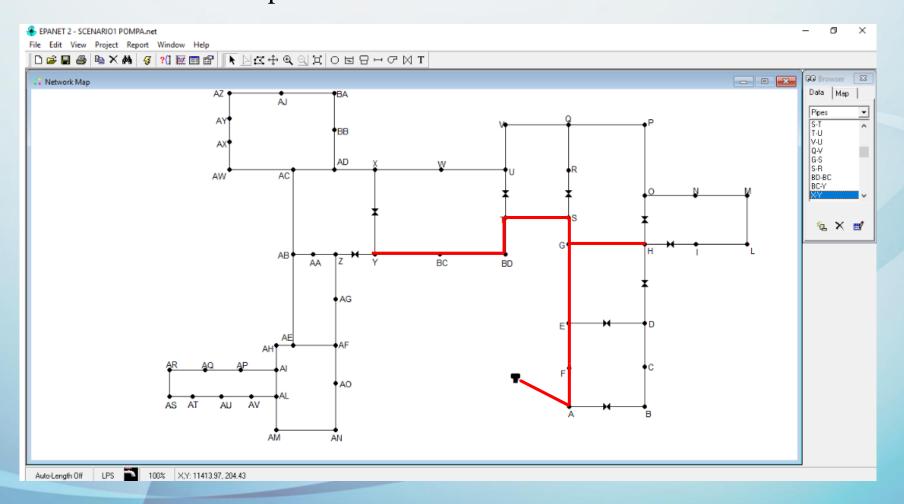





Lo scenario 10 prevede la rottura di alcuni tratti critici della rete, ovvero quelli che mettono in connessione il settore orientale e quello occidentale

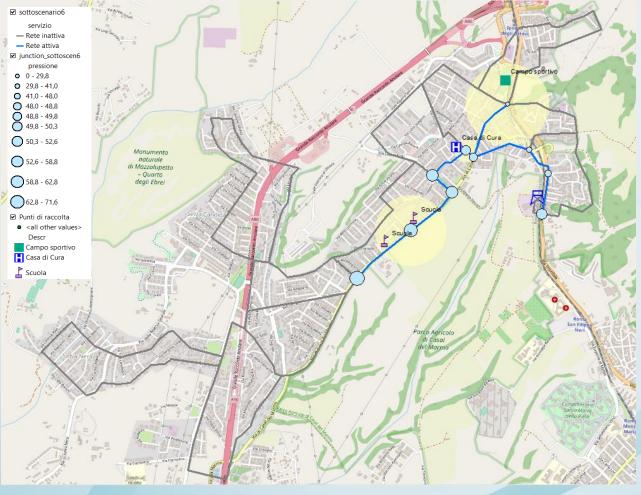
La zona critica si concentra nella parte estrema occidentale dove si hanno diametri inferiori.






Gli scenari 6 e 7 sono incapaci di fornire un servizio idrico adeguato a tutta la municipalità, per cui vengono considerati degli scenari alternativi.

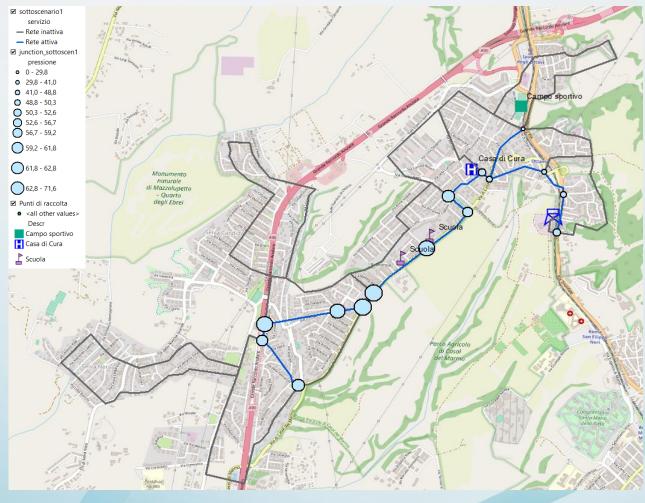





Il percorso scelto è stato isolato dal resto della rete di distribuzione mediante la chiusura di valvole di regolazione, in Epanet, provocando delle variazioni alle pressioni nodali.










La mappa rappresenta un sotto-scenario dello scenario 6 caratterizzato da una portata in ingresso di 5,78 l/s che garantisce il servizio, in condizioni ottimali, a poco più di 3000 abitanti







...sotto-scenario dello scenario 1 caratterizzato da una portata in ingresso di 16,2 l/s che garantisce il servizio, in condizioni ottimali, a circa 9000 abitanti.



#### **CONCLUSIONI**



- ➤ la numerosità degli scenari di malfunzionamento che può ipotizzarsi, è di gran lunga superiore a quanto considerato nell'analisi corrente. La scelta di soli 12 scenari dalla priorità di voler impostare una metodologia atta a studiare l'interdipendenza tra le due infrastrutture critiche
- > a partire dalla modellistica idraulica è stato realizzato uno strumento di simulazione idraulica
- ➤ i risultati delle simulazioni idrauliche sono tradotti in valutazione degli impatti sulla popolazione servita, mediante l'utilizzo mappe tematiche, generate in GIS ESRI-ArcGIS.
- ➤ l'insieme delle simulazioni idrauliche e delle mappe tematiche proposte rappresentano un valido strumento di supporto alle decisioni che competono agli enti gestori, chiamati ad affrontare situazioni di emergenza







- ➤ una migliore conoscenza del sistema fisico consentirebbe di definire un maggior numero di scenari per valutare il comportamento della struttura idraulica in maniera più ampia e pianificare scenari che illustrino la dinamica temporale del servizio idrico durante la particolare situazione di emergenza
- > migliorando il modello idraulico, tenendo conto delle relazioni tra le portate idrauliche e le pressioni nodali
- > migliorando l'analisi di vulnerabilità sismica delle tubazioni interrate