UNIVERSITÁ DEGLI STUDI DI NAPOLI FEDERICO II

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE DIPARTIMENTO DI INGEGNERIA CHIMICA, DEI MATERIALI E DELLA PRODUZIONE INDUSTRIALE

TESI DI LAUREA MAGISTRALE
IN INGEGNERIA PER L'AMBIENTE E IL TERRITORIO

Produzione di idrogeno mediante processi di fotoreforming di sostanze organiche catalizzati da TiO₂ modificato con Cu

Relatori Ch.mi Proff.	mi Proff. Correlatori		
Roberto Andreozzi	Ing. Laura Clarizia	Claudia Colecchia	
Raffaele Marotta	Dott. Ing. Ilaria Di Somma	Matr. M67/144	

ANNO ACCADEMICO 2014–2015

Idrogeno: il combustibile del futuro

Combustione dell'idrogeno:

 $2H_2+O_2\rightarrow 2H_2O$

Limiti del suo utilizzo

Costi di produzione e stoccaggio

Ottenimento con l'ausilio di combustibili fossili

Prospettiva futura

Sfruttamento dell'energia solare per la sua produzione

La fotocatalisi

La fotocatalisi è un fenomeno attraverso il quale si incrementa la velocità di una reazione chimica mediante l'utilizzo di una radiazione luminosa

- Stabile;
- Facilmente sintetizzato in grandi quantità mediante tecniche chimiche non invasive;
- Atossico;
- Non costoso;
- Ottime capacità ossidanti e riducenti;

Schema di un processo di fotocatalisi

TiO₂ modificato con Cu

Bassa capacità di assorbimento nel visibile

Limiti dell'impiego del solo TiO2

Schema di un processo di fotocatalisi in presenza di rame

Scopo della tesi

Studio di un processo fotocatalitico che ha come obiettivo la produzione di H₂ tramite reforming di specie organiche

Il sistema reagente investigato è costituito da una soluzione acque contenente inizialmente:

- -un agente sacrificale (sostanza organica)
- -ioni rameici (Cu²⁺)
- -un idoneo fotocatalizzatore (TiO₂)

L'interesse rivolto verso questo processo è duplice

- -indagini preliminari su un set selezionato di organici
- -individuazione delle condizioni ottimali per gli organici prescelti
- -modellazione matematica del sistema

Produzione di idrogeno

Impiego e depurazione di soluzioni contenenti organici

Apparecchiature e procedure sperimentali

Caratteristiche del reattore

- Fotoreattore anulare batch in vetro con le seguenti caratteristiche:
 - -cammino ottico L = 1.1 cm (costante lungo il suo asse);
 - -diametro esterno D = 6.5 cm;
 - -altezza H = 40 cm;
 - -volume irradiato V = 300 ml.
- Lampada a vapori di mercurio (Hg) ad alta pressione (UV 12F Helios Italquartz)
 con camicia di vetro avente una potenza nominale di 125 Watt.
- Gorgogliatore avente una portata pari a 0,3 l/min per lo strippaggio dell'O₂ tramite corrente di azoto gassoso insufflata in continuo

Tecniche e apparecchiature per l'analisi

- Analisi campioni gassosi: gascromatografo AGILENT 7820 A GC, equipaggiato con una colonna HP-PLOT Molesieve 5A (Agilent) e un detector TCD che impiega Argon come gas carrier.
- Analisi concentrazione rame totale (Cu(I)+ Cu(II)) in soluzione: metodo colorimetrico con kit analitico NANOCOLOR Rame della Macherey-Nagel e successiva analisi con spettrofotometro CARY 100 UV/Vis (Agilent)

Prova standard eseguita per il confronto degli organici

- [TiO₂]=500ppm
- $[Cu^{2+}]_0 = 0.8 \text{ mM}$
- [Organico]=10% vol
 - Cu(II)/TiO₂=10% peso

- T=25°C
- P=1 atm
- pH non corretto

Velocità della produzione di H₂ ottenuta impiegando il glicerolo come organico,

■ TiO₂ P25, ▲ TiO₂ modificato con rame

Andamento del pH della soluzione ottenuto impiegando il glicerolo come organico,

■ TiO₂ P25, ▲ TiO₂ modificato con rame

Tipico andamento delle irradianze nella prova standard

Misure di irradianza nei campi di lunghezze d'onda 315-400 nm e 400-1100 nm

ottenute impiegando il glicerolo come organico, ■ TiO₂ P25, ▲ TiO₂ modificato con rame

Confronto tra le sostanze organiche indagate

Sacrificial agent	Cu ²⁺ reduction	H ₂ production	pH_o	pH _{final}	r _{H²} bare TiO ₂ -P25 (μmol·min ⁻¹)	r _{H2} Cu-TiO ₂ -P25 (μmol·min ⁻¹)
Glycerol	Yes	Yes	6.40	2.90	2.18	5.50
Methanol	Yes	Yes	5.50	2.9	0.89	4.37
Formic acid	Yes	Yes	2.00	1.60	0.1	3.96
Sodium formate	Yes	Yes	8.20	9.70	1.23	3.55
Ethylene glycol	Yes	Yes	3.76	2.90	0.55	3.48
Propylene glycol	Yes	Yes	5.40	2.80	1.46	3.46
Glucose	Yes	Yes	5.40	2.80	0.34	2.50
Ethanol	Yes	Yes	5.40	2.90	1.50	2.05
Oxalic acid	Yes	Yes	0.10	0.45	0.10	0.96
Benzyl Alcohol	Yes	Yes	4.80	2.90	0.41	0.55
Isopropyl alcohol	Yes	Yes	5.50	2.80	0.14	0.55
Acetic acid	Yes	No	2.24	2.40	-	-

Glicerolo - Effetto della variazione del carico di catalizzatore

Glicerolo

Apprezzabile capacità di produrre idrogeno nelle condizioni operative adottate

Ampia disponibilità

Velocità della produzione di idrogeno, [C₃H₈O₃]=0.82M, mantenendo costante Cu(II)/TiO₂=10%

 $[TiO_2] = \blacktriangle 50ppm,$

- 80ppm,
- ♦ 100ppm,
- 125ppm.

Velocità della produzione di idrogeno, $[C_3H_8O_3]=0.82M$, mantenendo costante Cu(II)/ $TiO_2 = 10\%$ $[TiO_2]= \triangle 150ppm$,

- 175ppm,
- ♦ 250ppm,
- 500ppm.

Andamento delle irradianze nei ranges dell'UV e del visibile e andamento del pH

Sintesi dei risultati sperimentali ottenuti con la glicerina

(a) Velocità della produzione di H₂ e (b) Misure di irradianza nei campi di lunghezze d'onda 315-400 nm (nero) e 400-1100 nm (rosso) in in funzione del carico di catalizzatore.

Aspetto della soluzione finale, a) TiO2-P25, b) TiO₂ modificato con rame

Glicerina – Effetto della variazione del rapporto Cu(II)/TiO₂ per un carico di catalizzatore fissato ([TiO₂]=150 ppm)

 $[C_3H_8O_3]=0.82M$,

[TiO₂]=150ppm;

[Cu(II)] = 0.12mM;

■ 0.24mM;

• 0.48mM.

Velocità della produzione di idrogeno, $[C_3H_8O_3] = 0.82M, \qquad [TiO_2] = 150ppm; \\ [Cu(II)] = • 0.12mM;$

■ 0.24mM;

• 0.48mM.

Metanolo - Effetto della variazione del carico di catalizzatore

Il metanolo presenta punti di forza simili a quelli del glicerolo e in quanto tale è stato anch'esso oggetto di ulteriori indagini

160

180

Metanolo: Fase di spegnimento e riaccensione della lampada

- ♦ Modalità classica dove a 150 min è stata riaccesa la lampada;
- Inserimento soluzione nel reattore con lampada già a regime.

Confronto Glicerolo - Metanolo

Velocità della produzione di idrogeno al variare del carico,

 \blacktriangle [CH₃OH]=2.47M, TiO₂-P25;

- [CH₃OH]=2.47M, TiO₂ modificato con rame;
- \triangle [C₃H₈O₃]=0.82M, TiO₂-P25;
- $[C_3H_8O_3]=0.82M$, TiO_2 modificato con rame.

	Glicerolo	Metanolo		
In presenza di TiO ₂ puro	Comportamento simile			
In presenza di TiO ₂ modificato con Cu	Attinge a 150 ppm il massimo valore di produzione dell'idrogeno	Per l'intero range esplorato al crescere del carico di catalizzatore cresce la produzione di idrogeno		
Posizione dell'overshoot	Picco di produzione dopo circa 15 minuti dall'inserimento del Cu	Picco di produzione dopo circa 20 minuti dall'inserimento del Cu		
Andamento pH	Comportamento simile			
Spegnimento- riaccensione lampada	Entrambi dopo la riaccensione riattingono il valore di plateau antecedente allo spegnimento			

Efficienza del processo

Per valutare l'efficienza del sistema sono state considerate varie grandezze adimensionali in corrispondenza della massima velocità di produzione di idrogeno. Nella fattispecie si riporta di seguito la *resa quantica, η:*

$$\eta = \frac{2 \cdot r_{H_2}}{\sum I}$$
 la quale indica le moli di elettroni utilizzati rispetto alle moli di fotoni fornite dalla lampada.

La potenza complessiva emessa dalla lampada è data dalla sommatoria delle potenze alle diverse lunghezze d'onda:

$$\sum I_{UV-VIS} = 3.7 \cdot 10^{-5} \,\mathrm{E} \cdot \mathrm{s}^{-1}$$

Se si riuscisse a schermare l'effetto del visibile con opportuni filtri, si otterrebbe il seguente valore:

$$\sum I_{UV} = 8.36 \cdot 10^{-6} \,\mathrm{E} \cdot \mathrm{s}^{-1}$$

Glicerolo [TiO ₂]= 500 ppm Cu(II)/TiO ₂ =10%	η _{uv-vis} =0.63% η _{uv-} =2.79%	
Metanolo [TiO ₂]= 500 ppm Cu(II)/TiO ₂ =10%	η _{uv-vis} =0.49% η _{uv} =2.01%	

Caratterizzazione del catalizzatore

Spettri Raman (a); **spettri EPR** (b); **spettri XRD** (c) . In Figura (c) le frecce viola indicano i picchi relativi al rame zero, mentre le frecce rosa si riferiscono all'ossido rameoso.

Spettri XRD

La presenza del Cu(0) apparentemente non spiegherebbe il risultato. Tuttavia, sfruttando l'equazione di Scherrer:

$$B(2\theta) = \frac{K\lambda}{L\cos\theta}$$

è emersa la natura nanoparticellare del Cu(0), che potrebbe suggerire una possibile spiegazione (la dimensione media delle particelle è stimata intorno ai 30 nm).

Il rame, incorporato sul fotocatalizzatore, può dare origine a un fenomento di Risonanza Plasmonica Superficiale Localizzata che gli consentirebbe di fungere da semiconduttore, contribuendo in tal modo all'assorbimento dello spettro del visibile.

Modello matematico

Modello matematico

$TiO_2 \stackrel{hv}{\rightarrow} e^- + h^+$

$$e^- + h^+ \stackrel{K_r}{\rightarrow} \text{heat}$$

$$S + C_l \stackrel{K_{eq}}{\longleftrightarrow} S^*$$

$$S^* + h^+ \xrightarrow{K_h} S^* + H^+ \xrightarrow{fast} P + 2H^+$$

$$H^+ + e^- \xrightarrow{K_{H^+}} H^{\bullet} \xrightarrow{fact} \frac{1}{2} H_2$$

Bilancio sugli elettroni

$$\frac{d[e^{-}]}{dt} = G - K_r[e^{-}] \times [h^{+}] - K_{H^{+}}[H^{+}] \times [e^{-}]$$

Incognite:

- [e⁻]
- [h+]
- [S]
- moli di H_{2.}

Bilancio sulle specie "S"

$$\frac{d[S]}{dt} = -K_h[S^*] \times [h^+] = -K_h K_{eq}[S] \times [h^+] \times C_l = -K_h K_{eq} N \times [S] \times [h^+] \times [TiO_2]$$

Bilancio sulle lacune

$$\frac{d[h^+]}{dt} = G - K_r[e^-] \times [h^+] - 2K'[S] \times [TiO_2] \times [h^+]$$

Bilancio sull'idrogeno

$$\frac{dn_{H_2}}{dt} = \frac{1}{2} \times K_{H^+} [H^+] \times [e^-] = \frac{r_{H_2}}{V_{lig}}$$

- Il sistema di equazioni è stato risolto numericamente mediante l'utilizzo del software Matlab[®] consentendo il calcolo delle concentrazioni di tutte le specie in funzione del tempo.
- Le equazioni riportate sono state risolte, in corrispondenza delle appropriate condizioni iniziali, variando i valori di Kr, K', ϕ_{UV} , ϕ_{VIS} non noti a priori, minimizzando la differenza tra i dati.
- Il metodo di ottimizzazione utilizzato si basa sulla ricerca di quei valori dei parametri che rendono minima la funzione φ :

$$\varphi = \sum_{l=1}^{f} \sum_{j=1}^{k} \sum_{i=1}^{n} \left(y_{i,j,l} - f_{i,j,l} \right)^{2}$$

 $y_{i,j,l}$ = concentrazioni delle specie rilevate sperimentalmente $f_{i,j,l}$ = concentrazioni delle specie calcolate n = numero di punti di ogni singola prova k = numero di componenti f = numero di prove

Valori stimati dei parametri non noti in letteratura

Parametri Unità di misura		Valori stimati		
K _r	$M^{-1}s^{-1}$	$8.45E9 \pm 0.42E9$		
K [']	molM ⁻² s ⁻¹ g ⁻¹	$3.114E3 \pm 0.155E3$		
φυν	molE ⁻¹	0.0713 ± 0.006		
φvis	molE ⁻¹	0.0287 ± 0.0043		

Prova	pН	[TiO ₂] mg/L	[Cu(II)] ₀ mM	Deviazione standard (%)	
I	3.2	175	0.28	4.7	•
II	3.2	150	0.24	0.05	•
III	3.2	125	0.2	5.27	•
IV	3.5	100	0.16	2.28	A
V	3.6	80	0.12	5.19	•

Conclusioni

- 1. Le sostanze a base di rame fotodepositate sulla superficie di TiO₂ agiscono positivamente sulla velocità di generazione di idrogeno.
- 1. La maggior produzione di idrogeno registrata con il catalizzatore "dopato" è legata alle proprietà di assorbimento delle nanoparticelle di Cu(0) che si sono fotodepositate su di esso.
- 1. Il catalizzatore può esser conservato e riutilizzato, mantenendo inalterate le sue proprietà. La radiazione può essere captata anche in maniera discontinua nel tempo senza alterare l'efficienza del processo.
- 1. Bisogna migliorare le prestazioni del fotocatalizzatore poiché si riscontrano valori molto bassi in termini di efficienza del processo.

Ulteriori indagini e procedure in futuro potrebbero riguardare:

- l'analisi della concentrazione di substrato organico mediante un cromatografo liquido
- l'utilizzo fotocatalizzatori a base di TiO₂ dopati con altri elementi
- l'utilizzo di nuovi fotocatalizzatori non a base di TiO₂
- il perfezionamento del modello matematico ampliando il set di prove utilizzate in fase di ottimizzazione.