Università degli studi di Napoli Federico II

Scuola Politecnica e delle Scienze di base

Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale

Tesi di Laurea Magistrale in Ingegneria per l'Ambiente e il Territorio

Dissoluzione del palladio metallico in soluzioni moderatamente acide e fotodeposizione catalitica degli ioni di Pd²⁺

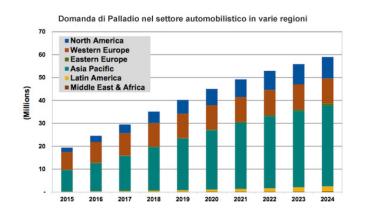
Relatori:

Ch.mo Prof. Roberto Andreozzi Ch.mo Prof. Raffaele Marotta

Correlatori:

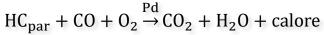
Dott.ssa Marica Muscetta Ing. Ilaria di Somma

Candidata:

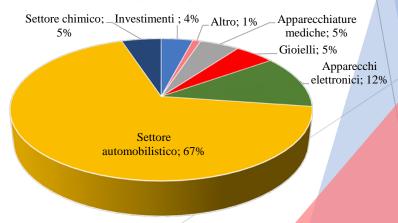

Tornesi Francesca Matr: M67/355

Anno Accademico 2018/2019

Configurazione di un convertitore catalitico Introduzione oxidation catalyst cerium and ceramic tail pipe emissions to elimiate carbon monoxide(CO) honeycomb catalyst structure and unburned hydrocarbons(HC) H2O (water) CO2 (carbon dioxide) N2 (nitrogen) reduction catalyst to eliminate NOX Il Palladio stainless steel Paesi produttori di Palladio alumina oxide - Al2O3 Zimbabwe for oxygen exhaust gas Stati Uniti sensor plug HC (hydrogen) CO (carbon monoxide) CO+1/2 O2=CO2 NOX (nitrogen oxide) Canada CO+NOX=CO2+N2 Sud Africa Russia


100

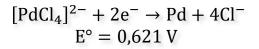
80



Tonnellate

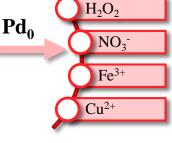
20

Principali impieghi dei PGM


Processo Idrometallurgico

1) Frantumazione

2) Vagliatura


- 3) Separazione magnetica
- 4) Lisciviazione

5) Recupero

Agenti Ossidanti

Agenti Liscivianti

Processo Idrometallurgico

1) Frantumazione

2) Vagliatura

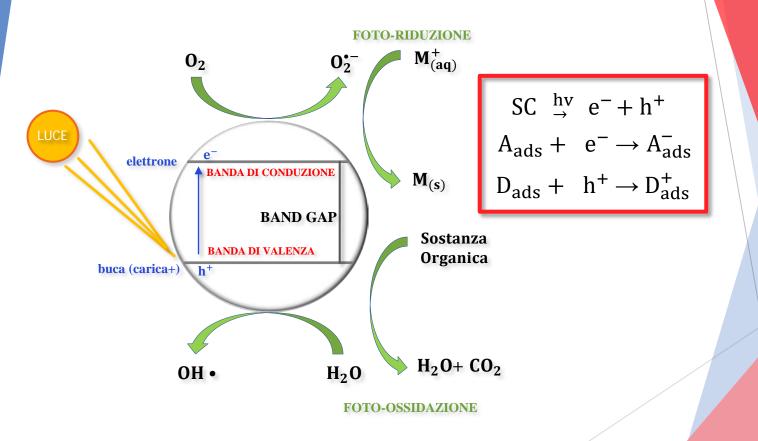
3) Separazione magnetica

4) Lisciviazione

5) Recupero

Estrazione con solvente

Precipitazione


Scambio ionico

Adsorbimento

Elettrodeposizione

Fotodeposizione

La Fotocatalisi

I Fotocatalizzatori

Vantaggi:

- Largamente disponibile in natura, atossico e economico;
- Presenta un valore di bang gap di circa 3 eV;
- Stabile in un ampio intervallo di pH;
- In grado di ossidare un gran numero di composti organici;

Svantaggi:

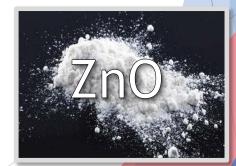
- Assorbire solo radiazioni in prossimità dell'UV;
- ✓ Ricombinazione buca-elettrone;

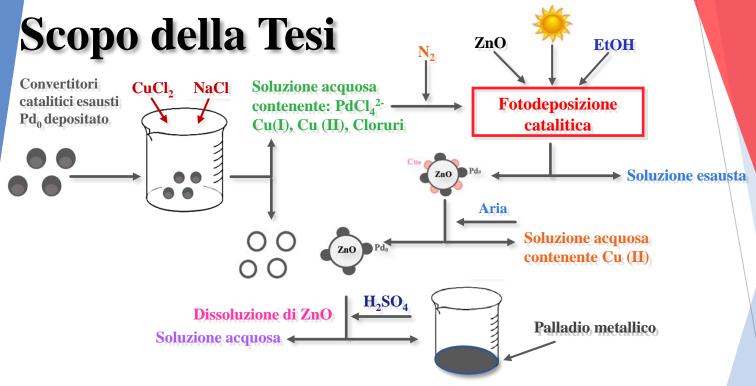
Vantaggi:

- ✓ Attivo nel visibile;
- Miglioramento delle prestazione in presenza di metalli;
- Presenta un valore di band gap di circa 2,8 eV;
- Fotoattività variabile con la morfologia;

Svantaggi:

- ✓ Minore efficienza di biodegradazione rispetto a TiO₂:
- ✓ Ricombinazione buca-elettrone;




Vantaggi:

- Largamente disponibile in natura, atossico e economico;
- Miglioramento delle prestazioni in presenza di metalli;
- Presenta un valore di band gap di circa 3,3 eV;
- Basso grado di ricombinazione buca-elettrone;

Svantaggi:

Fortemente dipendente dal pH formando zincati in soluzioni alcaline e dissolvendosi in soluzioni acide;

1) Processo di lisciviazione

$$Cu^{2+} + 2Cl^{-} + e^{-} \leftrightarrow CuCl_{2}^{-}$$

$$\frac{1}{2}Pd_{(s)} + 2Cl^{-} \leftrightarrow \frac{1}{2}PdCl_{4}^{2-} + e^{-}$$

$$\frac{1}{2}Pd_{(s)} + Cu^{2+} + 4Cl^{-} \to \frac{1}{2}PdCl_{4}^{2-} + CuCl_{2}^{-}$$

2) Processo di fotodeposizione

$$Zn0 \xrightarrow{hv} e^- + h^+$$
 $Zn0 + Pd^{2+} + 2e^- \rightarrow Pd^0/Zn0$
 $Cu^{2+} + 2e^- \rightarrow Cu^0/Zn0$
 $Et(OH) + h^+ \rightarrow P + H^+$

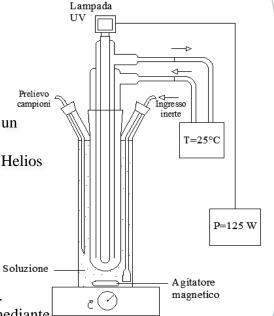
Apparecchiature e procedure speri<mark>mentali</mark>

Reattore anulare

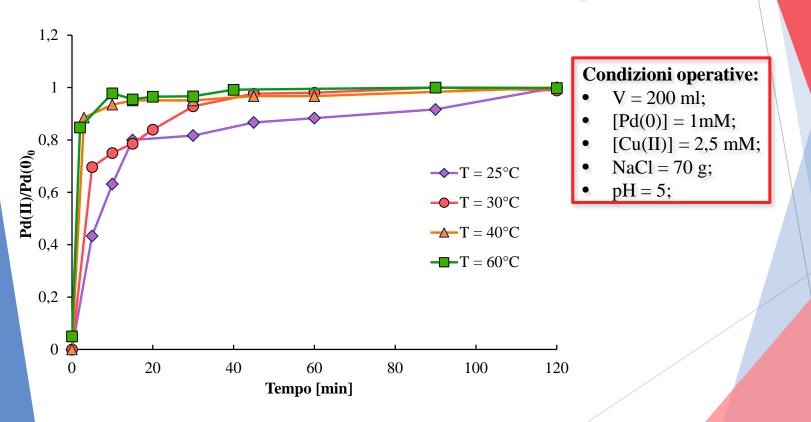
Caratteristiche principali:

- Cammino ottico L= 1.1 cm, costante lungo il suo asse;
- Diametro esterno D=6.5 cm;
- Altezza H= 20 cm:
- Volume irradiato V=300 ml.

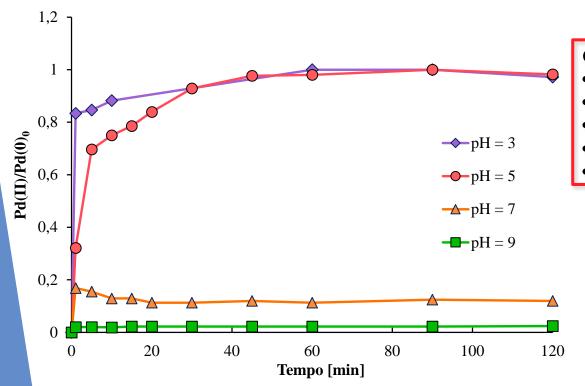
Camicia in vetro in cui circola acqua mantenuta costante tramite un bagno termostatico (FALC GTR 90).


Lampada a vapori di mercurio (Hg) ad alta pressione (UV 12F Helios Italquartz):

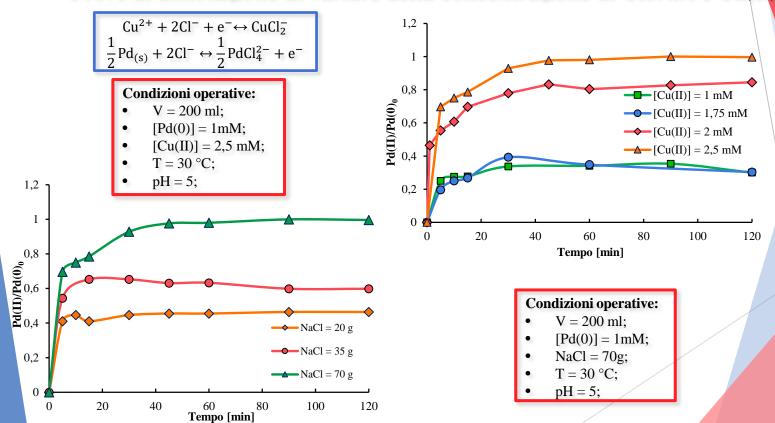
- Potenza nominale pari a 125 W;
- Emette nel campo dell'UV a 303, 313 e 366 nm;
- Emette nel campo visibile a 404.7, 407.8, 435.8, 545 nm;

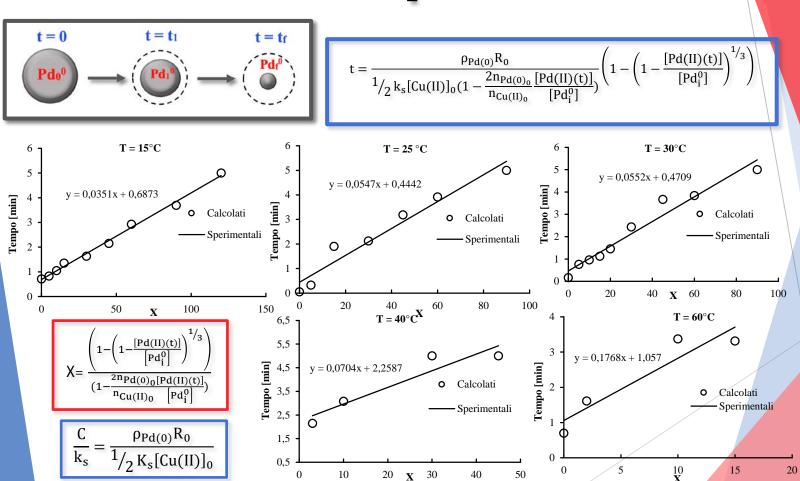

Inertizzazione tramite flusso di N₂ in continuo per 40 minuti

Tecniche e apparecchiature per l'analisi:


- Monitoraggio del pH della soluzione (pH-metro ORION 420 A+).
- Analisi della concentrazione di Pd(II) e Cu(II) mediante spettrofotometro CARY 100 UV/Vis (Agilent) : $\lambda = 420$ nm e $\lambda = 585$ nm rispettivamente ;
- Misure di irradianza della soluzione nell'intervallo 380- 550 nm mediante un radiometro (UV-Vis, Delta Ohm 2101,1);

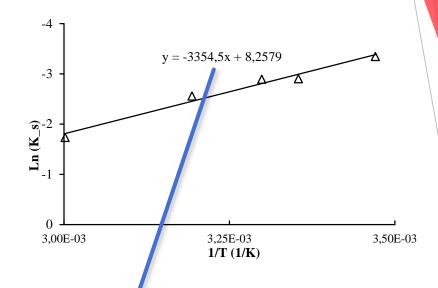
• Prove di dissoluzione al variare della Temperatura

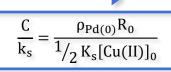

• Prove di dissoluzione al variare del pH


Condizioni operative:

- V = 200 ml;
- [Pd(0)] = 1mM;
- [Cu(II)] = 2.5 mM;
- NaCl = 70 g;
- $T = 30 \, ^{\circ}C;$

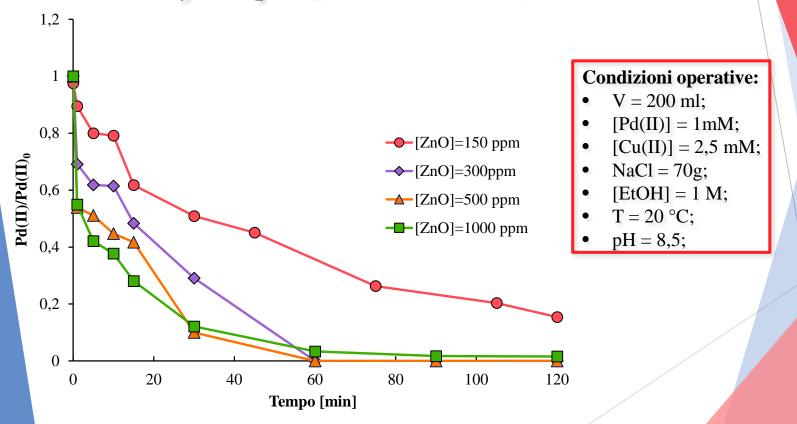
• Prove di dissoluzione al variare della concentrazione di Cloruri e Cu(II)



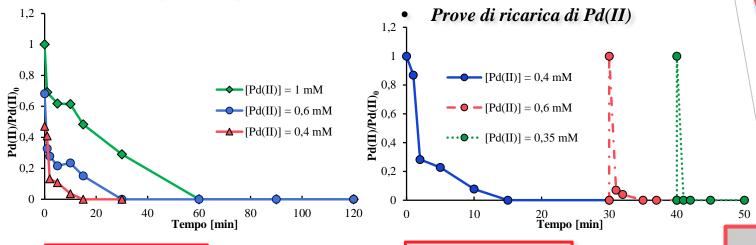

Modello Matematico del processo di dissoluzione

Modello Matematico del processo di dissoluzione

T [°C]	Pendenza	Log Pendenza
15	0,0351	-3,34955
25	0,0547	-2,90589
30	0,0552	-2,89679
40	0,0772	-2,56136
60	0,176	-1,73727



$$= -\log C + \log k_s = \log A' + \frac{-E}{RT}$$


 $\frac{E}{R} = 3354,5 \text{ K}$ E = 666

E = 6666,07 cal/mol

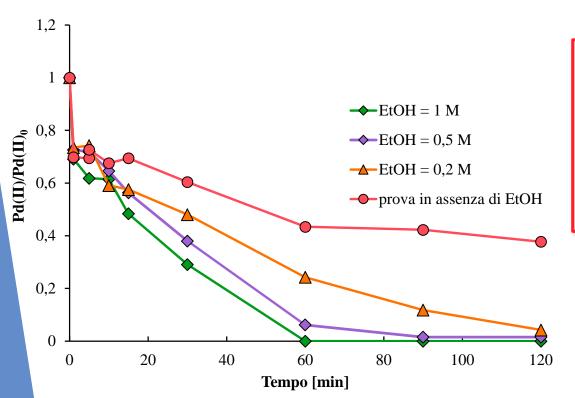
• Prove di fotodeposizione al variare del carico di ZnO

• Prove di fotodeposizione al variare del carico di Pd(II)

Condizioni operative:

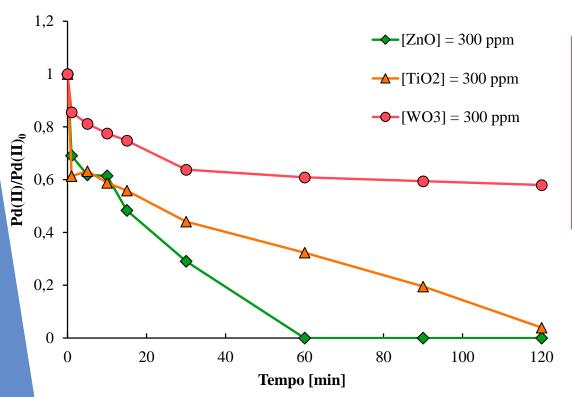
- V = 200 ml;
- [ZnO] = 300 ppm;
- [Cu(II)] = 2.5 mM;
- NaCl = 70g;
- [EtOH] = 1 M;
- $T = 20 \, ^{\circ}C;$
- pH = 8,5;

Condizioni operative:


- V = 200 ml:
- [ZnO] = 300 ppm;
- [Pd(II)] = 0.4 mM;

Pd(0)

- [Cu(II)] = 2.5 mM;
- NaCl = 70g;
- [EtOH] = 1 M;
- $T = 20 \, ^{\circ}C;$
- pH = 8,5;


• Prove di fotodeposizione al variare della sostanza organica

Condizioni operative:

- V = 200 ml;
- [ZnO] = 300 ppm;
- [Pd(II)] = 1 mM;
- [Cu(II)] = 2.5 mM;
- NaCl = 70g;
- $T = 20 \, ^{\circ}C;$
- pH = 8,5;

• Prove di fotodeposizione al variare del fotocatalizzatore

Condizioni operative:

- V = 200 ml;
- [Pd(II)] = 1 mM;
- [Cu(II)] = 2.5 mM;
- NaCl = 70g;
- [EtOH] = 1 M;
- $T = 20 \, ^{\circ}C;$
- pH = 8,5;

Schema cinetico del processo di fotodeposizione

1.
$$ZnO \xrightarrow{hv} h^+ + e^-$$

$$G = G_{uv} + G_{vis}$$

2.
$$h^+ + e^- \stackrel{k_r}{\rightarrow} Q + light$$

3.
$$S + \theta_{sub} \stackrel{K_{ads}}{\longleftrightarrow} S_{ads}$$

4.
$$S_{ads} + h^{+} \xrightarrow{K_{h^{+}}} S \cdot + h^{+} \xrightarrow{fast} P$$

5.
$$Pd^{2+} + e^{-} \stackrel{K_2}{\rightarrow} Pd^{+} + e^{-} \stackrel{fast}{\longrightarrow} Pd^{0}$$

6.
$$Pd^{2+} + Pd^{0} + e^{-} \xrightarrow{K_3} Pd^{0} + Pd^{+} + e^{-} \xrightarrow{fast} 2Pd^{0}$$

7.
$$Pd^{2+} + \theta_{Pd} \xrightarrow{K_1} Pd_{ads}^{2+}$$

8.
$$Pd_{ads}^{2+} \xrightarrow{K_{-1}} Pd^{2+} + \theta_{Pd}$$

9.
$$Pd_{ads}^{2+} + S_{ads} \xrightarrow{K_4} Pd^0 + P$$

Ipotesi semplificative:

- Resistenze diffusive esterne trascurabili;
- Assorbimento della radiazione da parte dei cloro-complessi del palladio trascurabile;
- Adsorbimento dell'etanolo in accordo con il modello di Langmuir-Hinshelwood;
- La concentrazione dei siti attivi θ_{Sub} può essere espressa come $N_{Sub}[ZnO]$
- La concentrazione dei siti attivi θ_{Pd} può essere espressa come $N_{Pd}[ZnO]$

Modello matematico del processo di fotodeposizione

Equazioni di bilancio

$$\frac{de^{-}}{dt} = G - r_r - 2r_2 - 2r_3$$

$$\frac{dPd^{2+}}{dt} = -r_2 - r_3 - r_1 + r_{-1}$$

$$\frac{dPd^0}{dt} = r_2 + r_3 + r_4$$

$$\frac{dPd_{ads}^{2+}}{dt} = r_1 - r_{-1} - r_4$$

•
$$S_{tot} = S + S_{ads}$$

•
$$S_{ads} = K_{ads}[S][\theta]$$

$\theta_{\text{sub}} = N_{\text{sub}}[\text{ZnO}]$

•
$$\theta_{Pd} = N_{Pd}[ZnO]$$

$$\frac{\mathrm{d}\theta_{\mathrm{Pd}}}{\mathrm{dt}} = -\mathbf{r}_1 + \mathbf{r}_{-1}$$

$$\frac{dPd^+}{dt} = 0$$

$$\frac{de^{-}}{dt} = G - r_{r} - 2r_{2} - 2r_{3}$$

$$\frac{d\theta_{Pd}}{dt} = -r_{1} + r_{-1}$$

$$\frac{dS_{tot}}{dt} = -r_{h} - r_{4}$$

$$\frac{dPd^{+}}{dt} = 0$$

$$\frac{dPd^{+}}{dt} = 0$$

$$Condizioni Iniziali: [e^{-}]_{t=0} = 0; [h^{+}]_{t=0} = 0; [S_{tot}]_{t=0} = S_{0}; [Pd^{2+}]_{t=0} = Pd^{2+}_{0}; [Pd^{+}]_{t=0} = 0 [Pd^{2+}_{ads}]_{t=0} = 0; [Pd^{2+}_{ads}]_{t=0} = \theta_{Pd,0}$$

Incognite:

$$h^+$$
, e^- , S , S_{ads} , θ_{Sub} , Pd^{2+} , Pd^+ , Pd^0 , θ_{Pd} , Pd^{2+}_{ads}

Funzione obiettivo da minimizzare:

$$\Phi = \sum_{l=1}^{n} \sum_{i=1}^{k} \sum_{j=1}^{a} (y_{i,j,l} - c_{i,j,l})^{2}$$

Dove:

- $y_{i,i,l}$ e $c_{i,i,l}$ sono le concentrazioni sperimentali e quelle calcolate;
- n, k, a sono rispettivamente il numero di tempi sperimentali, il numero di componenti e il numero di prove.

Modello matematico del processo di fotodeposizione

Ottimizzazione parametrica

PARAMETRI	Unità di misura	Valore ottimizzato
k ₁	mM ⁻¹ min ⁻¹	$112,1923 \pm 27,02$
k_{-1}	min ⁻¹	$1,796 \pm 0,032$
N _{Pd}	mmol/g	$0,6798 \pm 0,6798$
k _{ad}	mM^{-1}	$193,21 \pm 28,1$
k ₄	mM ⁻¹ min ⁻¹	$0,00050281 \pm 0,00000125$
N _{sub}	mmol/g	$0,016 \pm 0,00096$
k _r	mM ⁻¹ min ⁻¹	$380000 \pm 0,00000023$
k _h	mM ⁻¹ min ⁻¹	$50,07 \pm 2,5$
k ₂	mM ⁻¹ min ⁻¹	$1,1617 \pm 0,011$
k ₃	$\mathrm{mM}^{-2}\mathrm{min}^{-1}$	$0,\!000095 \pm 0,\!00000081$
$\phi_{ m uv}$	mmol/ein	25 ±0,51
$\phi_{ m vis}$	mmol/ein	88 ± 2,2

1.
$$ZnO \xrightarrow{hv} h^+ + e^-$$

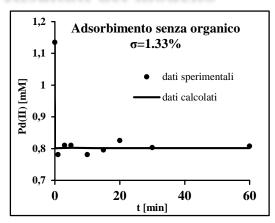
2.
$$h^+ + e^- \stackrel{k_r}{\rightarrow} Q + light$$

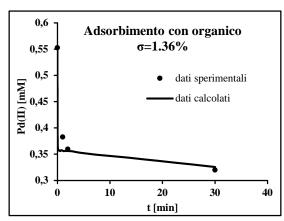
3.
$$S + \theta_{sub} \stackrel{K_{ads}}{\longleftrightarrow} S_{ads}$$

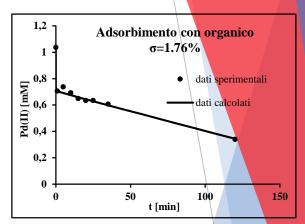
4.
$$S_{ads} + h^{+} \xrightarrow{K_{h^{+}}} S + h^{+} \xrightarrow{fast} P$$

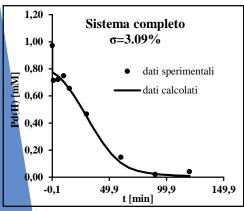
5.
$$Pd^{2+} + e^{-} \xrightarrow{K_2} Pd^+ + e^{-} \xrightarrow{fast} Pd^0$$

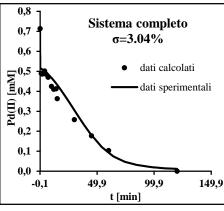
6.
$$Pd^{2+} + Pd^{0} + e^{-} \xrightarrow{K_3} Pd^{0} + Pd^{+} + e^{-} \xrightarrow{fast} 2 Pd^{0}$$

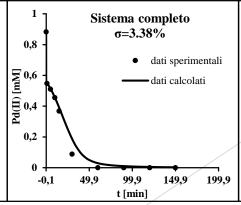

7.
$$Pd^{2+} + \theta_{Pd} \xrightarrow{K_1} Pd_{ads}^{2+}$$

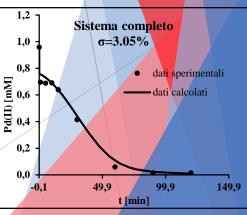

8.
$$Pd_{ads}^{2+} \xrightarrow{K_{-1}} Pd^{2+} + \theta_{Pd}$$


9.
$$Pd_{ads}^{2+} + S_{ads} \xrightarrow{K_4} Pd^0 + P$$


Modello matematico del processo di fotodeposizione


Risultati del modello





Conclusioni e prospettive future

Per concludere..

Sistema di dissoluzione :

- ✓ Possibilità di eseguire il processo a T< 60°C;
- ✓ Incremento della cinetica di dissoluzione in soluzioni a pH acido;
- Completa ossidazione del palladio in presenza di un eccesso di cloruri e [Cu(II)] superiore al valore stechiometrico;

Prospettive future

Sistema di dissoluzione :

- ✓ Esecuzione del processo a partire dai grani macinati del monolita;
- ✓ Utilizzo di nuovi agenti liscivianti e ossidanti;

Sistema di fotodeposizione :

- Concentrazioni maggiori di EtOH e ZnO migliorano la cinetica del processo fotocatalitico;
- ✓ La riduzione del palladio sulla superficie dell'ZnO ne incrementa le prestazioni;
- ✓ Possibilità di recuperare il palladio metallico a valle del processo semplicemente acidificando la soluzione;

Sistema di fotodeposizione :

- ✓ Ricerca di nuovi catalizzatori che permettano di migliorare il recupero di palladio;
- ✓ Utilizzo di nuovi organici;
- ✓ Sviluppo di un modello matematico più dettagliato;

Grazie per l'attenzione !!!