UNIVERSITA' DEGLI STUDI DI NAPOLI "FEDERICO II"

Scuola Politecnica e delle Scienze di Base Dipartimento di Ingegneria Civile, Edile e Ambientale

Corso di laurea triennale in INGEGNERIA PER L'AMBIENTE E IL TERRITORIO

Elaborato di Laurea in BONIFICA DEI SITI CONTAMINATI

Utilizzo di ferro zerovalente nanoscopico per la bonifica dei siti contaminati

Relatore:

Ch.mo Prof. Massimiliano Fabbricino

Candidata:

Ilaria Farese Matr. N49/585

Anno accademico 2017/2018

Applicazione del Ferro Zerovalente

Reattività del nZVI

Tecnologie combinate

Conclusioni

Industrializzazione

SITI CONTAMINATI

Sfruttamento delle risorse minerarie

Spandimento dei fanghi della depurazione

Metalli pesanti

Solventi clorurati

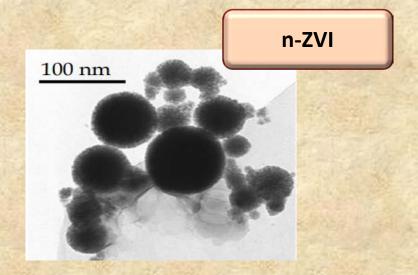
IPA

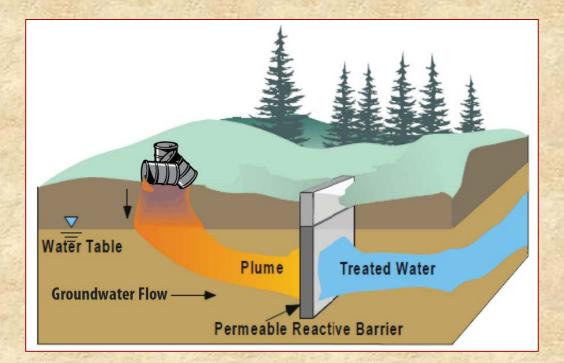
Diossine

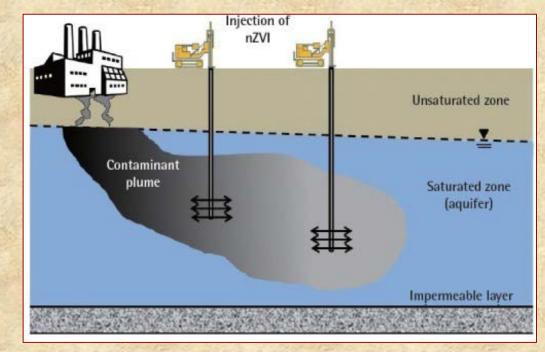
Fitofarmaci ecc

Utilizzo di fertilizzanti chimici e pesticidi

INTERVENTI DI BONIFICA


Applicazione del Ferro Zerovalente


Reattività del nZVI


Tecnologie combinate

Conclusioni

Processi di adsorbimento e precipitazione

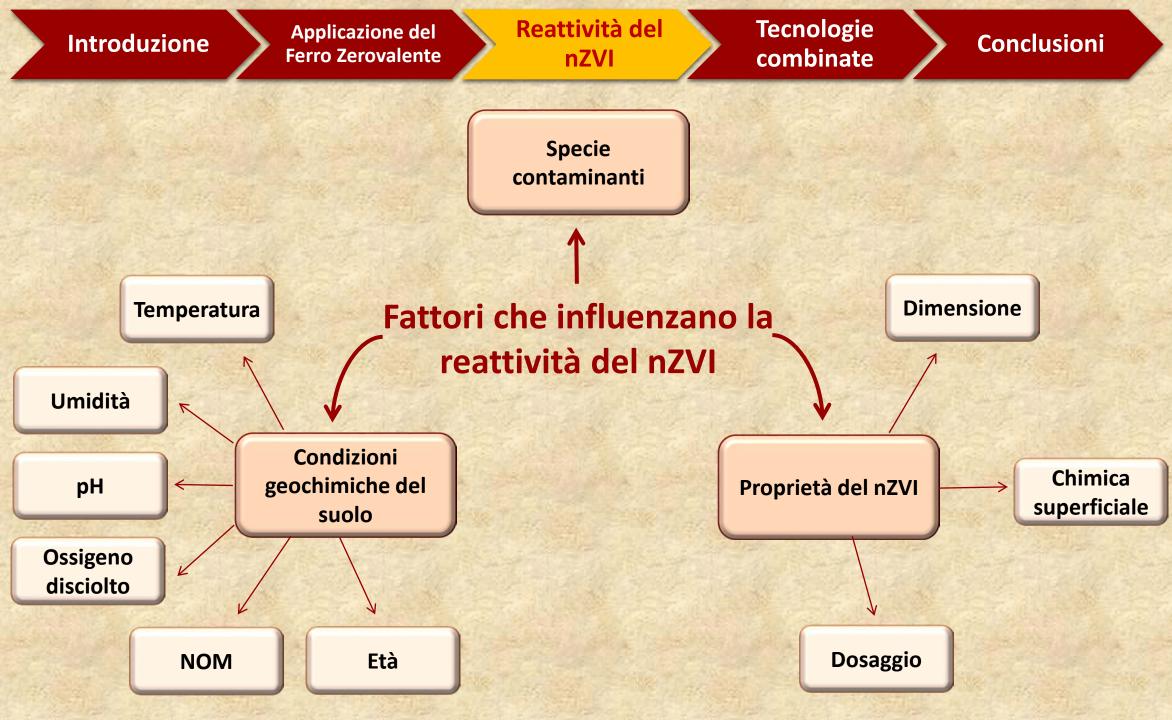
Reazioni di ossido-riduzione

$$Fe^0 + RCI + H^+ \longrightarrow Fe^{2+} + RH + CI^-$$

Applicazione del Ferro Zerovalente

Reattività del nZVI

Tecnologie combinate


Conclusioni

Terreno bersaglio	Trattamenti	Concentrazione di inquinanti	Prestazioni principali
Terreno inquinato da As	nZVI	315 mg / kg	La bioaccessibilità è diminuita del 40,4%
Terreno inquinato da As	nZVI	5800 mg / kg	La quantità di As nella frazione residua è aumentata.
Terreno inquinato da Cr (VI)	nZVI / Cu	120 mg / kg	L'efficienza di riduzione di Cr (VI) ha superato il 99% a un pH di 5.
		Cd 360 mg / kg	La biodisponibilità e la tossicità sono state ridotte.
Terreno inquinato da nZVI / carb Pb, Cd e Cr attivo		Pb 600 mg / kg	
		Cr 80 mg / kg	
Terre rosse inquinate da uranio	nZVI	50 mg / kg	La capacità di adsorbimento è aumentata di 5- 10 volte

Rimozione di metalli pesanti

Rimozione di inquinanti organici persistenti

	Terreno bersaglio	Trattamenti	Prestazioni principali
	Terreno inquinato da IPA	nZVI	È stata ottenuta la rimozione completa di BAP e ANT, con un grado di rimozione vicino al 90% di PHE
240000	Terreno inquinato da IPA	nZVI	L'efficienza di rimozione degli IPA nel suolo è elevata fino al 62%.
	Terreno inquinato da PCB e TCE	Fe / Pd stabilizzato con amido	Il 98% di TCE è stato trasformato e l'80% dei PCB è stato distrutto.
	Terreno inquinato da ibuprofene	nZVI	L'efficienza di degradazione di ibuprofene è arrivata al 95%.
Open water	Terreno inquinato da TNT	nZVI	La rimozione del TNT ha raggiunto il 99,8%.

 Effetto a lungo termine su microrganismi e piante

Introduzione

Problemi

Obiettivi

 Ridurre uso eccessivo di nZVI Utilizzo di tecniche di bonifica combinate

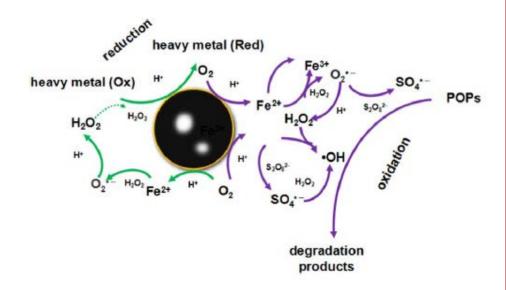
Rimedi

1. Combinazione nZVI / trattamenti fisici

Introduzione

Tecnologia nZVI assistita da ultrasuoni

- Maggiore esposizione dei siti di reazione;
- rimozione di strati di ossido e impurità tramite cavitazione sonora;
- elevato consumo di energia, rumore ed erosione cavitazionale


Tecnologia nZVI assistita elettronicamente

• Accumulo degli inquinanti e trattamento centralizzato da nZVI grazie all'effetto elettrico (elettroosmosi, elettromigrazione ed elettroforesi)

2. Combinazione nZVI / trattamenti chimici

Combinazione nZVI con tecnica ISCO

Introduzione

Meccanismo di reazione proposto per la rimozione di metalli pesanti e inquinanti organici dal sistema ibrido nZVI/persolfato

Combinazione nZVI con soil washing

- Aumento della velocità di desorbimento del TCE con tensioattivo SDS;
- azione chelante dell'EDTA sul Fe³⁺;
- effetti dannosi sui microrganismi

 Consumo di energia

Introduzione

Inquinamento secondario

Svantaggi

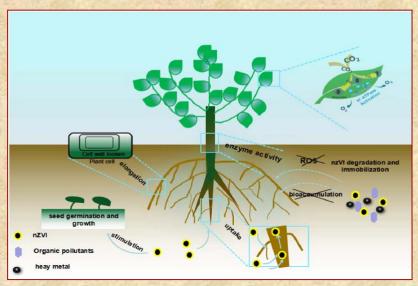
Alternative

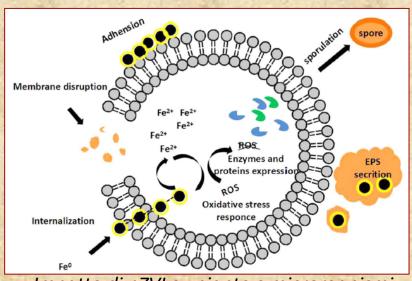
 Utilizzo di biotecnologie (Phytoremediation e Microremediaton)

3. Combinazione nZVI / trattamenti biologici

Combinazione nZVI con phytoremediation

Introduzione


Panicum Maximum



Helianthus annuus

Combinazione nZVI con microremediation

- nZVI modifica il potenziale redox del suolo;
- la corrosione del Fe genera H₂ che stimola la crescita microbica e la declorazione;
- nZVI modifica la struttura del suolo con miglioramento delle condizioni di vita dei microrganismi

Impatto di nZVI su piante e microrganismi

Introduzione

1. I metodi di produzione esistenti per nZVI sono complessi, lunghi e la preparazione su larga scala è ancora costosa;

nZVI

- I meccanismi esatti di rimozione degli inquinanti non sono stati chiariti. Le reazioni complicate influenzano ancora trasformazione, la migrazione e le prestazioni del nZVI;
- 3. La ricerca sulla bio-remediation combinata con nZVI è ancora agli inizi. Sono necessari ulteriori modelli per stimare i rischi potenziali indotti dal nZVI sulle piante, microrganismi e suolo, al fine di rendere questi sistemi pienamente competitivi;
- La maggior parte degli studi sono stati condotti solo su scala di laboratorio. Le applicazioni sul campo sono necessarie poiché l'ambiente naturale è complesso e difficile da imitare.

GRAZIE PER L'ATTENZIONE