Università degli Studi di Napoli Federico II

Scuola Politecnica e delle Scienze di Base

Dipartimento di Ingegneria Civile, Edile e Ambientale

CORSO DI LAUREA IN INGEGNERIA PER L'AMBIENTE E TERRITORIO

Presentazione della tesi di laurea

UTILIZZO DELLA RISORSA GEOTERMICA PER LA PRODUZIONE DI ENERGIA

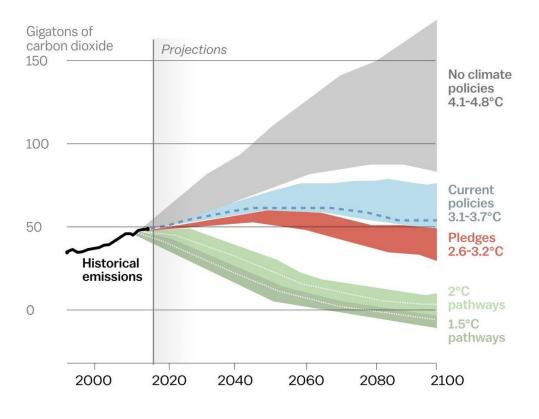
Relatore:

Prof.

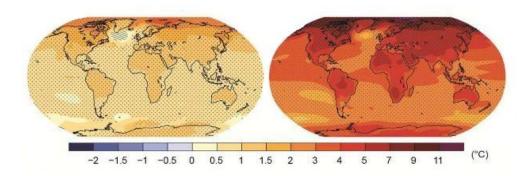
Francesco Calise

Candidato:

Nicola Ambrosino


Matricola N49000620

Sommario


- ▶ Quadro sui cambiamenti climatici e fonti energetiche rinnovabili
- **▶** Energia geotermica
- **▶** Uso indiretto
- Conclusioni

I cambiamenti climatici

Scenari emissioni di CO2 al 2100

Variazione della temperatura superficiale media (1986-2005 e 2081-2100)

- Eventi climatici estremi e variazione del clima di intere aree geografiche con conseguenze per milioni di persone
- Andamento con politiche attuali
- Riduzione emissioni di anidride carbonica del 45% entro il 2020
- Andamento ottimistico
- Efficienza energetica
- Utilizzo di fonti alternative → Nucleare
- Incremento fonti rinnovabili

Le fonti energetiche rinnovabili

Risorsa solare

→ Fotovoltaico

Eolico

→ Termico

→ Biomasse

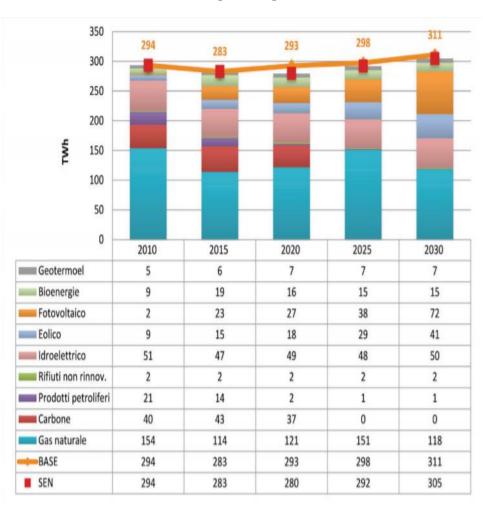
Risorsa acqua

→ Idroelettrico

Energia marina

Risorsa termica naturale

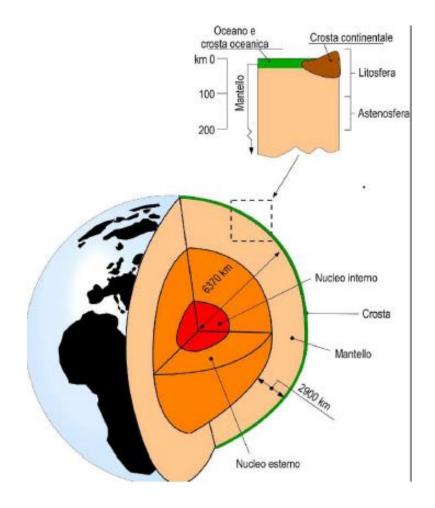
→ Geotermia



Le fonti energetiche rinnovabili

Evoluzione del mix di generazione elettrica al 2020 e 2030 (TWh). Scenario SEN

Riduzione petrolio e carbone

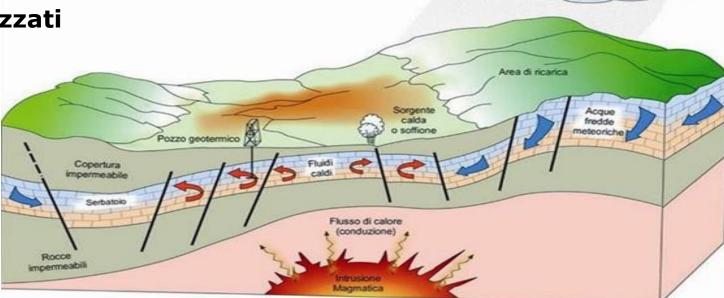

Incremento energetico eolico —— Non programmabili e fotovoltaico

Saturazione del potenziale idroelettrico economicamente sfruttabile

Contributo geotermico e Programmabili

Il gradiente geotermico

Schema della struttura interna della Terra



La temperatura nel sottosuolo cresce con la profondità. Mediamente si osserva un incremento della temperatura pari a:

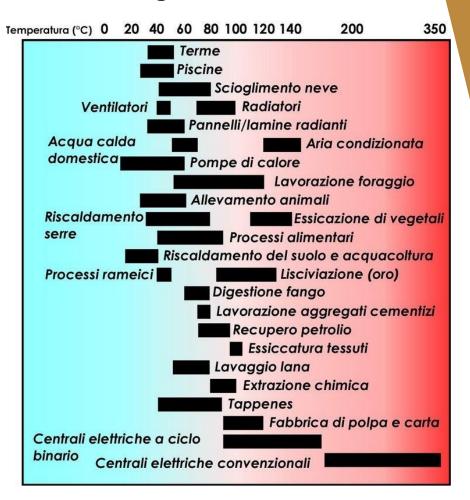
$$\Delta T \cong 25 - 35 \frac{^{\circ}C}{km}$$

Classificazione della risorsa geotermica

- **→** Sistemi idrotermali (t>100°C)
- **→** Sistemi magmatici (600°C<t<1400°C)
- → Sistemi a rocce calde secche (200°C<t<350°C)
- **→** Sistemi geopressurizzati

Schema semplificato di un sistema idrotermale

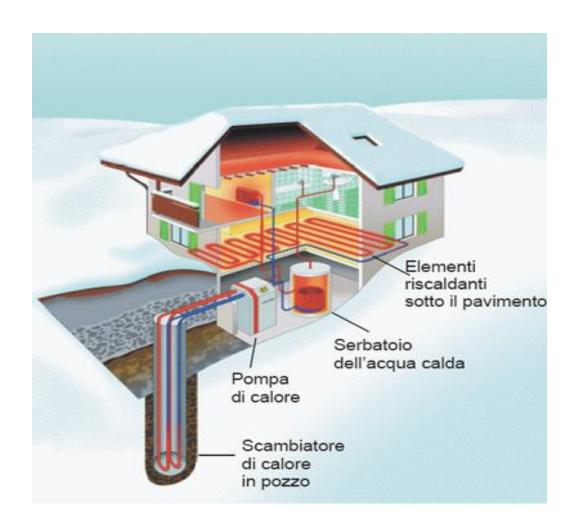
Classificazione della risorsa geotermica


Classificazione delle risorse geotermiche in base alla temperatura (°C)

Risorse e T (°C)	(a)	(b)	(c)	(d)	(e)
Risorse a bassa entalpia	< 90	< 125	< 100	≤ 150	≤ 190
Risorse a media entalpia	90-150	125-225	100-200	-	-
Risorse ad alta entalpia	>150	> 225	> 200	> 150	> 190

Rif. T (°C): (a) Muffler and Cataldi (1978); (b) Hochstein (1990); (c) Benderitter and Cormy (1990); (d) Nicholson (1993); (e) Axelsson and Gunnlaugsson (2000)

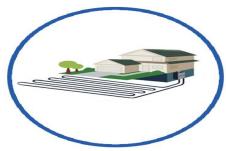
Utilizzi


Diagramma di Lindal

Condizionamento degli ambienti

Un impianto geotermico tradizionale è costituito principalmente da:

- sistema di captazionedel calore in cui scorre un fluido termovettore
- pompa di calore
- sistema di accumulo e distribuzione del calore



Sistemi a circuito chiuso e aperto

Sonde geotermiche verticali

Sonde geotermiche orizzontali

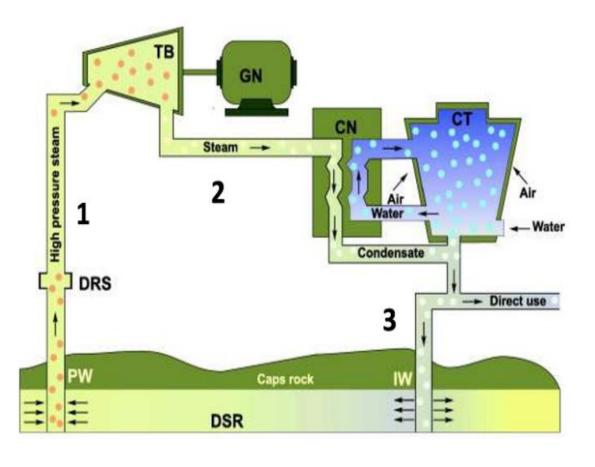
Sistemi open loop

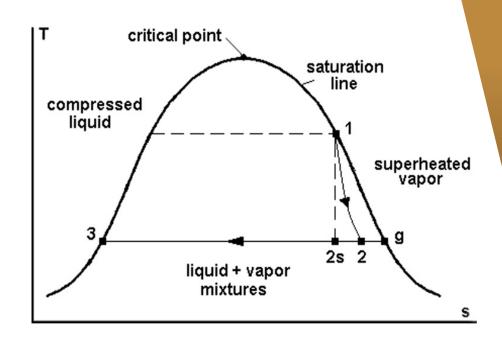
Tipologia	VANTAGGI	SVANTAGGI	
Sonde geotermiche	Sorgente a T°C costante	Costi perforazione	
verticali	Efficienza stagionale	Elevate profondità (50m-250m)	
	Ingombro modesto e zero impatto ambientale		
Sonde geotermiche	Impiantistiche semplici	Estese superfici di scavi	
orizzontali	No perforazioni e rel. geologica	Efficienza ridotta	
	Costi contenuti	per riscaldamento	
Acqua come sorgente	Utili per edifici medio- grandi	Verifica disponibilità acqua	
termica	Minor numero di perforazioni	Reimmissione di acqua in falda	
	Iter autorizzativo (in	Detriti ed incrostazioni specie per laghi, fiumi e mare	
	genere per tutte le tipologie)	Costi più elevati	

Sistemi a circuito chiuso e aperto

Proprietà fisiche dei fluidi termovettori più comunemente utilizzati negli impianti geotermici a bassa entalpia.

Fluido	T [°C]	λ [Wm- ¹ K- ¹]	μ [10 ⁻³ Pas ⁻¹]		
riuido	T _{cong} [°C]	\ \[\(\text{V} \[\(\text{V} \] \]	a 0°C	a 30°C	
Acqua pura	0	0.59	1.79	0.80	
Glicole propilenico 20%	-7	0.45	4.00	1.78	
Glicole propilenico 30%	-12	0.42	7.00	2.37	
Glicole etilenico 20%	-8	0.44	3.27	1.03	
Glicole etilenico 30%	-16	0.42	4.38	1.30	
CaCl ₂ 10%	-7	0.57	2.13	0.93	
CaCl ₂ 20%	-20	0.54	3.12	1.54	

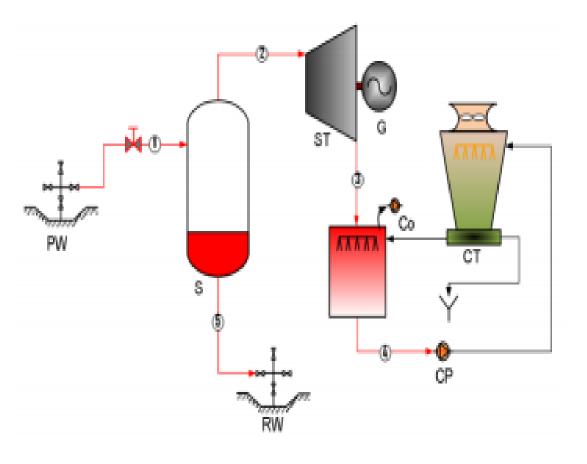

Resa termica di alcune tipologie di suolo

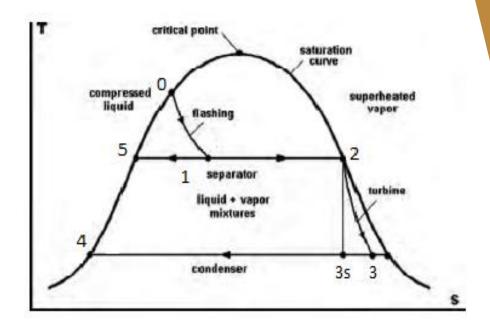

Tipo di suolo	resa termica		
	1.800 ore anno	2.400 ore anno	
	Wm ⁻²	Wm ⁻²	
terreno non coesivo secco	10	8	
terreno coesivo umido	20÷30	16÷24	
sabbia o ghiaia satura	40	32	

Costi realizzazione di un impianto geotermico

dimensione immobile	potenza erogata impianto	potenza assorbita dalla rete elettrica	potenza assorbita dai pozzi geotermici	dimensione pozzi geotermici	costo pozzi geotermici	costo centrale termica	costo totale impianto
(m2 utili)*1	(kW)	(kW)	(kW)	(ml)	(€)*2	(€)	(€)
80/100	4,8	1,2	3,6	80	4.900	6.900	11.800
90/120	6,8	1,7	5,1	100	5.200	7.450	12.650
110/130	8,4	2	6,4	125	6.400	8.100	14.500
130/160	12,5	3,2	9,3	160	8.000	9.700	17.700
170/200	15,1	3,7	11,4	220	10.800	11.000	21.800
200/250	18,5	4,5	14	270	12.900	12.600	25.500
250/300	23	5,5	17,5	300	13.800	14.300	28.100

Impianti dry-steam

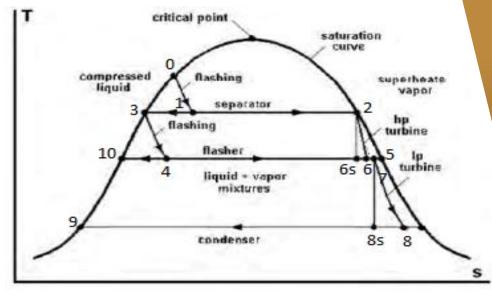



Rendimento exergetico del 50-65%

→ Temperatura sorgente 250-600°C

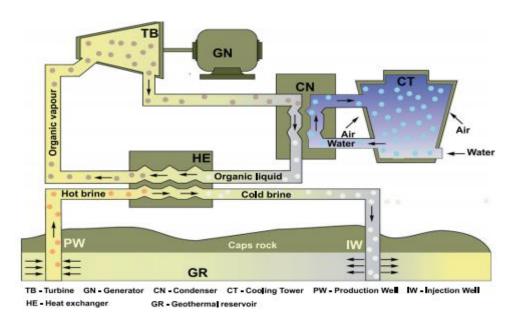
→ Impianti semplici e poco costosi

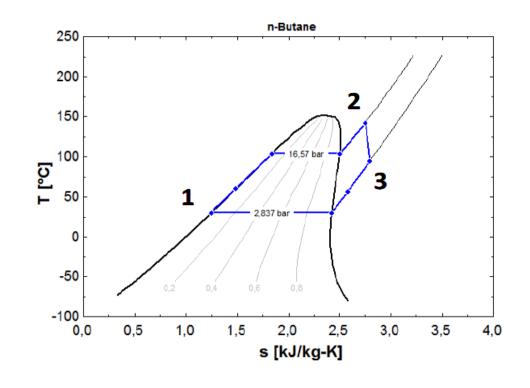

Impianti single-flash



- Rendimento exergetico del 30-35%
- Taglie di impianto comprese tra qualche MW e 90 MW
- → Temperatura sorgente 200-260°C

Impianti double-flash





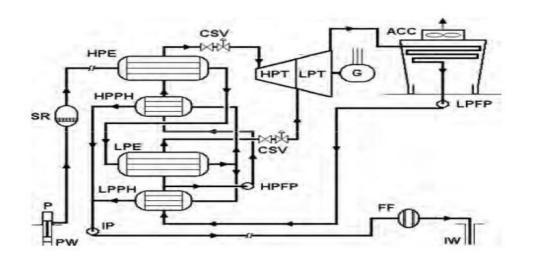
- **→** Impianti più complessi e costosi
- **→** Incremento della potenza del 15-25%
- **→** Temperatura sorgente 240-320°C
- Rendimento exergetico del 35-45%

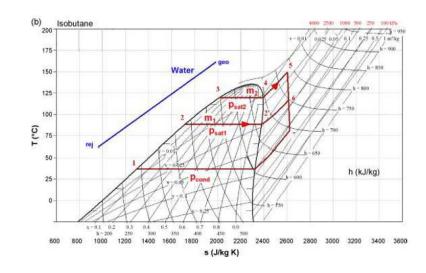
I fluidi organici

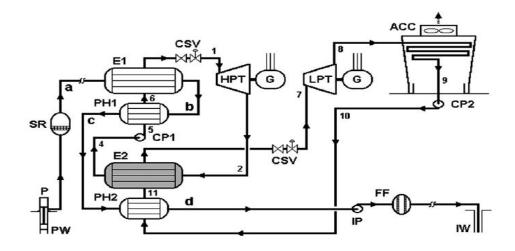
Impianti binari

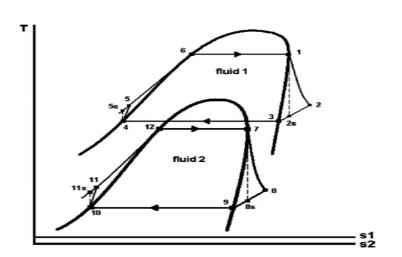
Rendimento exergetico del 25-45%

Taglie di impianto comprese tra poche centinaia di kW e alcuni MW


Temperatura sorgente 125-165°C

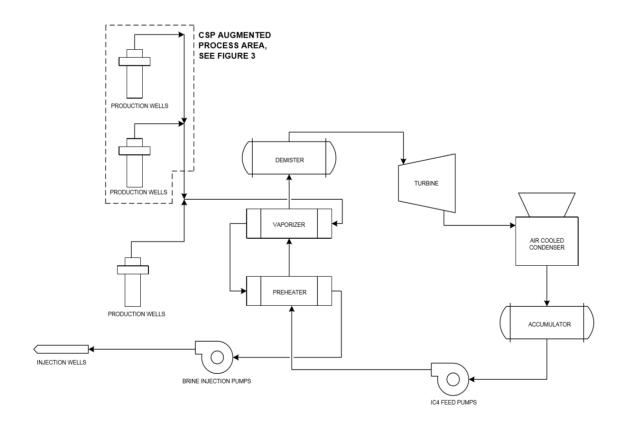
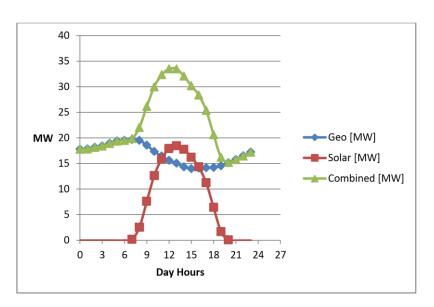

Riduzione del livello di temperatura all'evaporatore

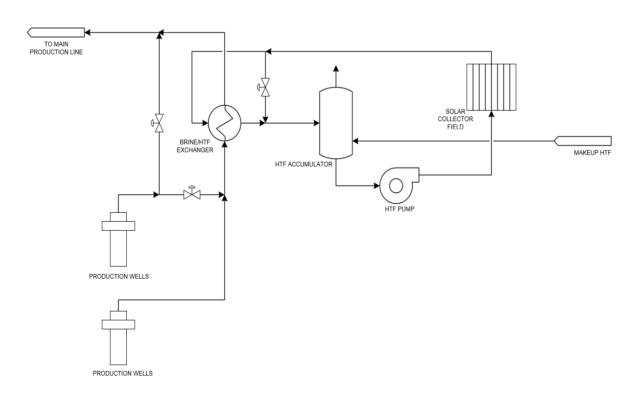

Non si forma acqua allo stato liquido nella turbina, con gravi danni erosivi


Possibilità di usare pressioni massime più basse, con riduzione dei costi dei componenti che lavorano ad alte pressioni

Impianti binari a doppio livello di pressione e a doppio fluido

Impianti ibridi


Diagramma semplificato del processo geotermico

Produzione media netta di energia geotermica e solare per un tipico giorno di primavera

- Colmare la riduzione di rendimento nei mesi estivi
- → Incremento di produzione fino a 26 MW

Impianti ibridi

Incremento temperatura del fluido geotermico

Riduzione della perforazione di pozzi aggiuntivi

Reimmissione nei pozzi della salamoia geotermica alla T°C originaria

Riduzione depauperamento della risorsa geotermica

Incremento di 3 milioni di kWh all'anno

Diagramma semplificato del processo della sezione solare termica

Conclusioni

La risorsa geotermica può svolgere un ruolo fondamentale nella produzione di energia pulita, dato il basso impatto ambientale e la disponibilità costante.

Contributo importante nell'efficienza energetica di numerosissimi processi, in particolare nella produzione di energia elettrica data la sua programmabilità e sfruttando la cooperazione con altre fonti in sistemi ibridi.

Il suo sviluppo è contrastato dall'avversione sociale soprattutto legata ad una scarsa informazione e dai mancati incentivi da parte delle Istituzioni.

