UNIVERSITÀ DEGLI STUDI DI NAPOLI "FEDERICO II"

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE Corso di Laurea Magistrale in Ingegneria per l'Ambiente e il Territorio

Tesi di laurea

SIMULAZIONE NUMERICA DELL'EROSIONE A VALLE DI SOGLIE DI FONDO

Relatore

Ch.mo Prof. MASSIMO GRECO

Candidato CHIARADONNA ROSA Matr. M67/5

Indice della Presentazione

- Generalità sull'erosione localizzata
- Studio sull'erosione localizzata a valle di soglie di fondo
- Modello numerico
- Simulazioni numeriche
- Considerazioni conclusive

Generalità sull'erosione localizzata

Soglie di fondo: soluzione per stabilizzare il letto degradante di fiumi e canali

EROSIONE

Da un'indagine nazionale è emerso che negli anni 1987-1996 su 400 ponti ben 72 hanno subito crolli o danni gravi durante eventi alluvionali, nel 30% dei casi a causa di erosione (Ballio et al. 1998)

Studio sull'erosione localizzata a valle di soglie di fondo

Sperimentazione di Gaudio & Marion (2003)

Sloping Sediment Duct

Lunghezza del canale: 5.57 m Larghezza del canale: 0.60 m Sedimento: sabbia uniforme (diametro medio =1.8 mm; densità relativa sommersa del sedimento Δ = 1.63)

Schizzo dello scavo a valle di soglie di fondo

So : pendenza variabile $Q_0=q/B$: portata per unità di larghezza variabile

Dimensioni all'equilibrio della fossa di scavo y_s : massima profondità I_s : lunghezza

Modello numerico

Modello bidimensionale per acque poco profonde basato su una formulazione bifase

Ipotesi:

- densità liquida e densità solida costanti;
- sedimento uniformemente graduato e non coesivo;
- il letto fisso è saturo con una porosità;
- acque poco profonde:
 - ✓ le componenti verticali accelerazione e velocità trascurabili
 - ✓ distribuzione idrostatica delle pressioni lungo l'asse verticale
- concentrazione di volume costante lungo l'asse verticale della regione del trasporto di fondo e concentrazione del sedimento sospeso che segue passivamente il moto della fase fluida

Equazioni del modello:

- fase liquida;
- fase solida che si muove come trasporto di fondo;
- fase solida che si muove come trasporto in sospensione;
- predizione della deformazione del letto.

Simulazione numerica dell'erosione a valle di soglie di fondo

Modello numerico

2FACE (Flow Analysis and Control of Evolution)

-		
Absoft Tools - 2FACE		- 0 X
Ele Edit View Broject Build Help		
14 BELAA	🧶 🕈 🖉 💭 💋 🕼 Active Buld: Release 🔹 🛛 🗐 🖾 层 🦂 🥼 📋	
Files Ø8	paramf.f90 2Face.f90	
Name ▲ Opbons ▼ P95 2Face, f90 -1"." -05 -W132 -ffree m6- FLUVAL.f90 -1"." -05 -W132 -ffree m6- bed, f90 -1"." -05 -W132 -ffree m6- geofal.f90 -1"." -05 -W132 -ffree m6- geofal.f90 -1"." -05 -W132 -ffree m6- geomtest.f90 -1"." -05 -W132 -ffree m6- mgdebug.f90 -1"." -05 -W132 -ffree m6- mgdebug.f90 -1"." -05 -W132 -ffree m6- mgdebug.f90 -1"." -05 -W132 -ffree m6- mg/teco.f90 -1"."	<pre>1 program TwoFace 2 ! 2phase Flow Analysis and Control of Evolution = 2FACE 3 include 'mesh.f90' 4 real hsource 5 real *8 assmassp,assmassm,z1,z2,z3 6 logical sw 7 dimension nv(4) 8 real cl(NCO),cr(NCO),ct(NCO),fluxms(NCO), osv(NCO) 9 ! TECPLOT I/O 10 integer ipr 11 character(len=10) ::cmd 12 npoints=0 13 nghosts=0 14 accmacen=0 0</pre>	
4	bs2do *	Line: 1 Col: 1
Build		0
Build Errors/Warnings SMP Analyzer		

Simulazioni numeriche

Simulazioni degli esperimenti di Gaudio e Marion (2003):

- 1. Simulazioni della prova sperimentale;
- 2. Analisi della sensitività dei parametri incogniti;
- 3. Calibrazione dei parametri del modello;
- Calcolo delle massime profondità di scavo e confronto con la sperimentazione

Simulazione della prova sperimentale 1

Parametri del modello:

- Dimensioni del canale = 5.57 x 0.60 m;
- Distanza tra le soglie, L = 2.5 m
- Proprietà fisiche del sedimento ($D_{50}=1.8$ mm; $\Delta=1.63$; $\rho_s=2630$ kg/m³)
- Pendenza iniziale del letto, So=0.0094
- Portata solida immessa a monte nulla, q_{so}=0;
- Portata per unità di larghezza $Q_0 = 0.020 \text{ m}^2/\text{s}$
- Altezza d'acqua iniziale, a depth = 0.044 m
- Parametro di mobilità critico di Shields, θc =0.040

Parametri incogniti:

- Angolo di attrito della sabbia, $\varphi = 45^{\circ} (30^{\circ} \div 45^{\circ})$
- Porosità del letto di sabbia, $\lambda = 0.40$ (0.25÷0.50)
- Valori massimo e minimo del coefficiente adimensionale di Chezy, rispettivamente, Chezy1 =20 (alveo molto liscio) e Chezy2 =8 (alveo molto scabro)

Simulazione della prova sperimentale 1

Simulazioni	dx (m)	dy (m)	Ssx	Sill Spacing (m)	a length (m)	ρ _s (kg/m³)	ρ (kg/m³)	d (m)	Δ	λ	g (m²/s)	φ (°)	θ	Chezy 1	Chezy 2	a depth (m)	Q ₀ (m²/s)
1	0.01	0.1	0.0094	2.5	5.57	2630	1000	0.0018	1.63	0.4	9.81	45	0.04	20	8	0.044	0.020
1.1	0.01	0.1	0.0094	2.5	5.57	2630	1000	0.0018	1.63	0.4	9.81	40	0.04	20	8	0.044	0.020
1.2	0.01	0.1	0.0094	2.5	5.57	2630	1000	0.0018	1.63	0.4	9.81	32	0.04	20	8	0.044	0.020
1.3	0.01	0.1	0.0094	2.5	5.57	2630	1000	0.0018	1.63	0.3	9.81	45	0.04	20	8	0.044	0.020
1.4	0.01	0.1	0.0094	2.5	5.57	2630	1000	0.0018	1.63	0.5	9.81	45	0.04	20	8	0.044	0.020
1.5	0.01	0.1	0.0094	2.5	5.57	2630	1000	0.0018	1.63	0.4	9.81	45	0.04	8	8	0.044	0.020
1.6	0.01	0.1	0.0094	2.5	5.57	2630	1000	0.0018	1.63	0.4	9.81	45	0.04	15	8	0.044	0.020
1.7	0.01	0.1	0.0094	2.5	5.57	2630	1000	0.0018	1.63	0.4	9.81	45	0.04	20	13	0.044	0.020
1.8	0.01	0.1	0.0094	2.5	5.57	2630	1000	0.0018	1.63	0.4	9.81	45	0.04	20	20	0.044	0.020

Effetto di ϕ sui profili di fondo

t = 900 s

Simulazione numerica dell'erosione a valle di soglie di fondo

Effetto di λ sui profili di fondo t = 0 s

t = 900 s

Simulazione numerica dell'erosione a valle di soglie di fondo

Effetto di Chezy1 e Chezy2 sui profili di fondo

Simulazione numerica dell'erosione a valle di soglie di fondo

Calibrazione dei parametri del modello

Simulazione numerica dell'erosione a valle di soglie di fondo

Confronto con la sperimentazione

Simulazioni delle prove sperimentali adottando i parametri calibrati

Simulazioni	dx (m)	dy (m)	Ssx	Sill Spacing (m)	a length (m)	ρ _s (kg/m³)	ρ (kg/m³)	d (m)	Δ	λ	g (m²/s)	φ (°)	θ _c	Chezy 1	Chezy 2	a depth (m)	Q ₀ (m²/s)
1	0.01	0.1	0.0094	2.5	5.57	2630	1000	0.0018	1.63	0.4	9.81	45°	0.04	20	13	0.044	0.020
2	0.01	0.1	0.007	2.5	5.57	2630	1000	0.0018	1.63	0.4	9.81	45°	0.04	20	13	0.064	0.032
6	0.01	0.1	0.0059	2.5	5.57	2630	1000	0.0018	1.63	0.4	9.81	45°	0.04	20	13	0.059	0.028
9	0.01	0.1	0.011	2.5	5.57	2630	1000	0.0018	1.63	0.4	9.81	45°	0.04	20	13	0.051	0.024

Confronto con la sperimentazione

	Prova 1	Simulazione 1			Prova 2	Simulazione 2
t (h)	y _s (cm)	y _s (cm)		t (h)	y _s (cm)	y _s (cm)
0	0	0	11	0	0	0
0.42	1.65	3.34	97	0.5	2.52	2.49
0.84	3.54	3.34		1	4.48	2.49
1.26	3.95	3.34		1.5	5.93	2.49
1.67	5.10	3.34		2	7.18	2.49

	Prova 6	Simulazione 6		STIM.	Prova 9	Simulazione 9
t (h)	y _s (cm)	y _s (cm)		t (h)	y _s (cm)	y _s (cm)
0	0	0	1	0	0	0
0.5	1.69	2.09		0.5	8.21	3.91
1	2	2.09		1	9.64	3.91
1.5	2.22	2.09		1.5	11.08	3.91
2	2.68	2.09		2	10.11	3.91

L'escavazione presenta caratteri di forma completamente diversi da quelli degli esperimenti e le profondità vengono raggiunte in tempi molto più brevi che non in quelle sperimentali.

Considerazioni Conclusive

- Il problema analizzato è molto rilevante perché la stabilità delle opere poste in alveo dipende dal fenomeno di escavazione;
- Il modello numerico adottato è un modello per acque poco profonde basato su una formulazione bifase e derivato dal principio di conservazione della massa e dall'equazione dell'equilibrio dinamico per la fase liquida e per la fase solida;
- Il lavoro svolto è stato quello di simulare il fenomeno dell'erosione localizzata a valle di soglie di fondo, in particolare gli esperimenti eseguiti nello Sloping Sediment Duct da Gaudio e Marion (2003);
- L'applicazione del modello si è rilevata decisamente insoddisfacente nello specifico caso, perché predice una evoluzione del fondo troppo veloce non riproducendo adeguatamente la dinamica del fenomeno.