UniversiTà degli STudi di Napoli Federico II

Scuola Politecnica e delle Scienze di Base

Dipartimento di Ingegneria Civile, Edile e Ambientale

Corso di Laurea Magistrale in Ingegneria per l'Ambiente ed il Territorio

(Classe delle Lauree Magistrali in Ingegneria per l'Ambiente ed il Territorio, Classe LM-35)

Tesi di Laurea

"Analisi sperimentale della capacità di adsorbimento del fango attivo essiccato e polverizzato per la rimozione dei fluoruri"

Relatore:

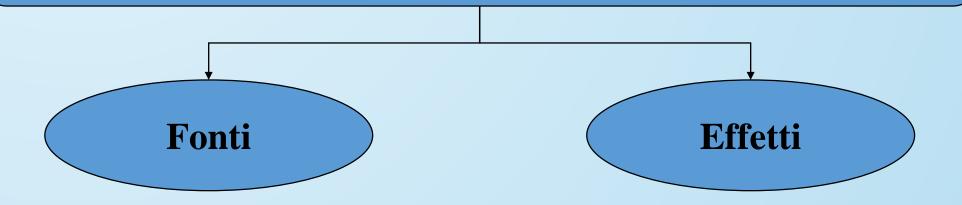
Ch.mo Prof. Ing.
Massimiliano Fabbricino
Ch.ma Prof.ssa
Yao Chen

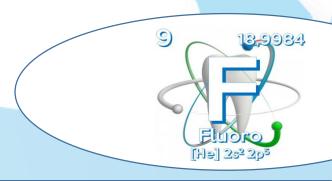
Candidata: Rosa Menale

M67000444

Anno Accademico 2018/2019

Perché è importante rimuovere il fluoro

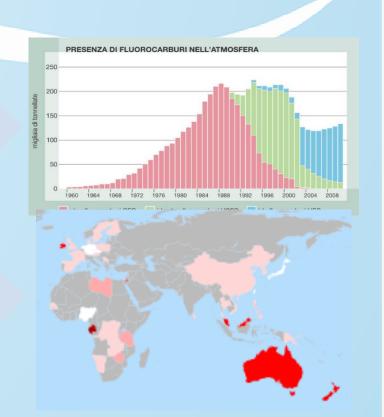

> Processo adoperato per l'eliminazione


> Modelli utilizzati per descrivere il processo

Il Fluoro

➤ Il fluoro pur essendo un **elemento tossico e reattivo** la sua esposizione passa inosservata su molti bersagli compresi esseri umani.

Fonti


L'alta concentrazioni di fluoruri nell'ambiente è dovuta:

Utilizzo abituale dell'elemento base

- Fertilizzante; fonte per ridurre le carie dentarie
- Lavorazioni di vetro e ceramiche; impianti di estrazione berillio e smaltimento di alluminio
- Raffinerie di petrolio; fluorocarburi e centrali elettriche

Fonti naturali

- Nelle zone di montagna
- In aree con depositi geologici di origine marina come l'Asia sud-orientale o l'Africa nord-orientale

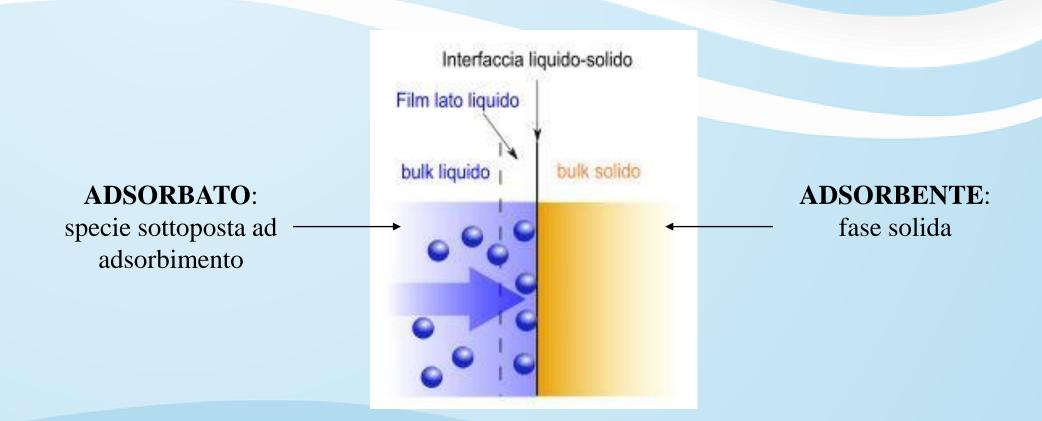
Effetti

L'esposizione a tale elemento influisce negativamente causando:

Danni neuronali

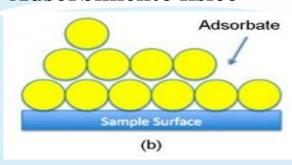
È in grado di attraversare la barriera ematoencefalica producendo cambiamenti biochimici e funzionali nel sistema nervoso

Disturbi dell'apprendimento

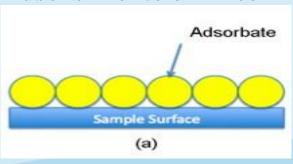

Fragilità delle ossa

Provoca intorpidimento delle braccia e dei piedi, spasmi muscolari e dolore, convulsioni e paraplegia spastica

Fluorosi scheletrica


Adsorbimento

Trasferimento di materia, di una certa specie chimica, da un fluido ad un solido.


Adsorbimento

Adsorbimento fisico

multistrato

Adsorbimento chimico

monostrato

Adsorbimento

fisico

chimico

Il contaminante è trattenuto sulla superficie del materiale adsorbente da deboli forze di natura elettrostatica con una bassa energia di legame

Il contaminante viene adsorbito attraverso dei veri e propri legami chimici e quindi quasi sempre in maniera dissociativa

Meccanismo sia fisico che chimico

Attrazione elettrostatica

$$\cong S - OH + H^{+} \longleftrightarrow S - OH_{2}^{+}$$

$$\cong S - OH_{2}^{+} + F^{-} \longleftrightarrow S - F + H_{2}O$$

Scambio di leganti

$$\cong S - OH + F^{-} \longleftrightarrow S - F + OH^{-}$$

Le capacità di adsorbimento del fango è affiancata all'uso di altri adsorbenti a basso costo.

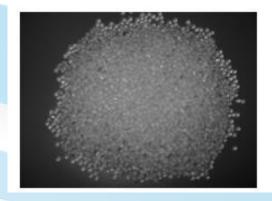
Preparazione

Fango attivo


Adsorbenti

Fango attivo modificato con Lantanio

12 ml di H₂SO₄ al 35%; 24 gr di fango; 48 grammi di ZnCl₂ corrispondenti a 6 moli/L.


L'intera soluzione viene suddivisa in quattro parti con concentrazioni di [La] molto basse

← Alla temperatura di 550°C

Dal punto di vista chimico, quando reagisce con l'acqua rilascia idrogeno gassoso. Tale elemento tende a reagire con ossidanti.

Gli ioni metallici del lantanio [La³⁺] possono legare con Cl⁻:

$$LaCl + F^{-} \rightarrow LaF + Cl^{-}$$

E con lo ione idrossido OH-:

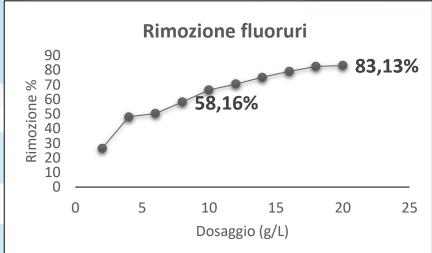
$$LaOH + H^+ \rightarrow LaOH_2^+$$

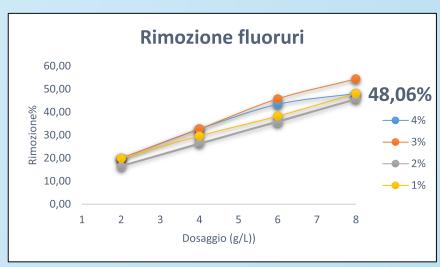
$$LaOH_2^+ + F^- \rightarrow LaF + H_2O$$

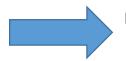
Test di adsorbimento

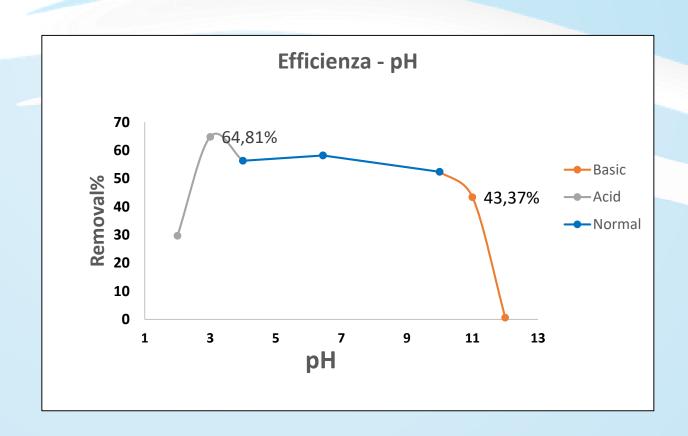
Agitazione in mixer orbitale a 150 rpm (per un tempo e temperatura fissati)

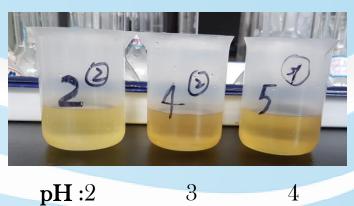
Preparazione dei campioni da trattare



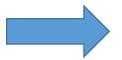

Filtrazione e prepazione per il calcolo del potenziale (con l'elettrodo a membrana iono-selettivo)

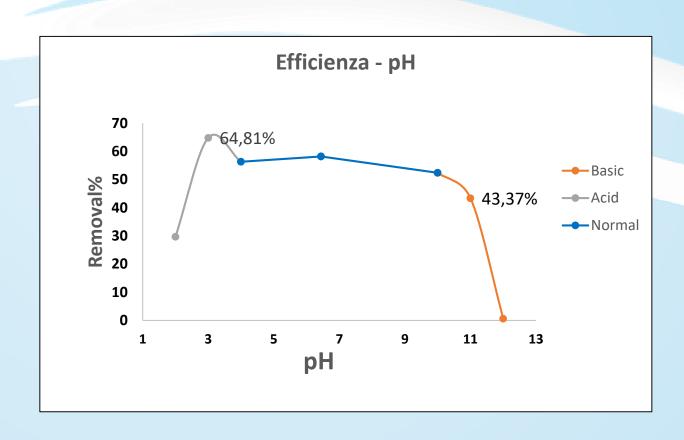

Agitatore
termostatico rotante
(con l'elettrodo PF
202) e calcolo del
potenziale che
consente la
determinazione della
concentrazione
residua di fluoro



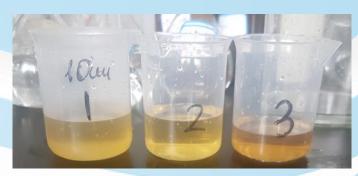


Test su soluzione sintetica: Effetto del pH


pH acid


Aumento del protone H⁺

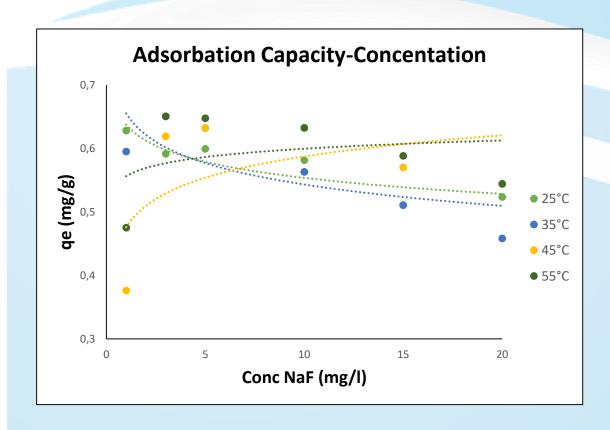
Aumenta l'interazione elettrostatica

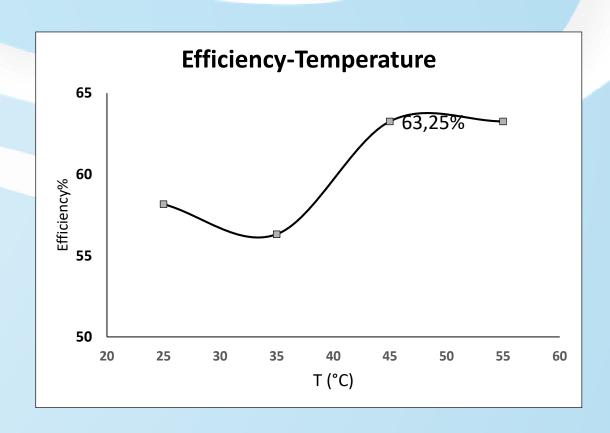

Migliora l'adsorbimento dei fluoruri

Test su soluzione sintetica: Effetto del pH

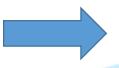
pH basic

pH: 10 11 12


Elevata concentrazione degli gruppi anioni dell'idrossido OH-


Competizione con il fluoro nell'occupazione dei siti di adsorbimento

Minore rimozione di fluoro

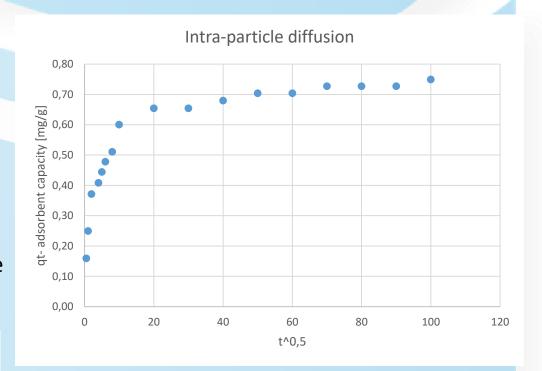

Test su soluzione sintetica: Effetto concentrazione e temperatura

$$qe = \frac{(C_0 - C_e) \cdot V}{M_{fango}}$$
 — Quantità adsorbita

Aumentando T → [NaF] diminuisce

Modelli analitici: Cinetica di adsorbimento

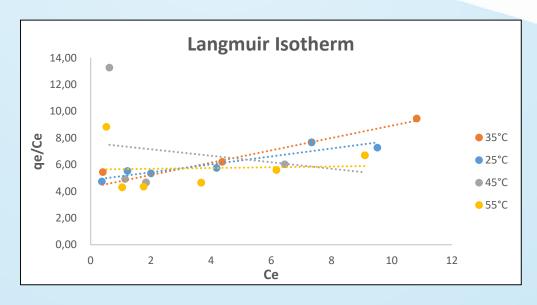
I modelli cinetici utilizzati per descrivere il processo di adsorbimento:


•
$$\log(q_e - q_t) = \log q_e - \frac{k_1}{2.030} t$$
 pseudo-primo ordine

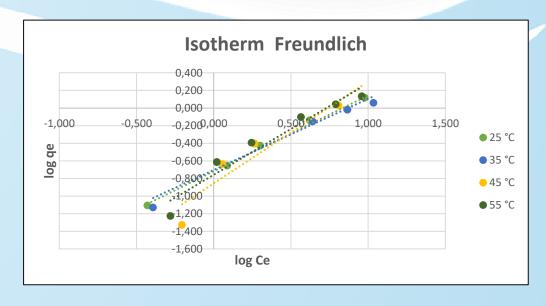
$$\bullet \quad \frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$

pseudo-secondo ordine

diffusione intra-particellare


Adsorbent e	q _{e(exp)}	Pseudo primo- ordine		Pseudo secondo- ordine		Intra- particellare	
Fango	0,75	k_1	R ²	k ₂	R ²	k _p	R ²
		0,0149	0,931	0,304	0,9989	0,004	0,6962

Modelli analitici: Isoterme di adsorbimento


Isoterma di Langmuir

$$\frac{C_e}{q_e} = \frac{1}{q_{max} \cdot K_L} + \frac{C_e}{q_{max}}$$

Isoterma di Freundlich

$$\log q_e = \log K_F + \frac{1}{n} \log C_e$$

	т	Langmuir isotherm			Freundlich isotherm		
Adsorbente	(°C)	Qm(mg/g)	K _L (L/mg)	R ²	$K_F(mg/g(L/mg)^{1/n})$	1/n(mmol/g)	R ²
	25	3,364	0,062	0,876	5,225	0,860	0,995
Sludge	35	2,165	0,107	0,926	5,056	0,808	0,968
	45	-4,117	-0,043	0,060	7,175	0,154	0,913

Modelli analitici: Parametri termodinamici

Sono stati stimati i valori dell'energia libera di Gibbs, Entalpie ed Entropia per studiare la termodinamica del processo di adsorbimento. Le espressioni utilizzate sono riportate di seguito:

$$\Delta G^{\circ} = -RT \ln(k_d)$$

R=costante universale dei gas

$$\ln K_d = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{RT}$$

T(K) temperatura assoluta

Kd costante di equilibrio di adsorbimento

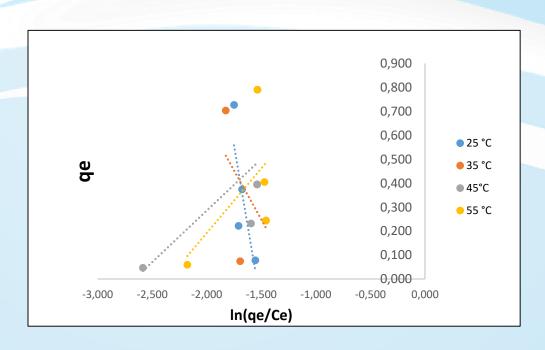
$$\Delta G < 0 \quad \Delta S > 0$$

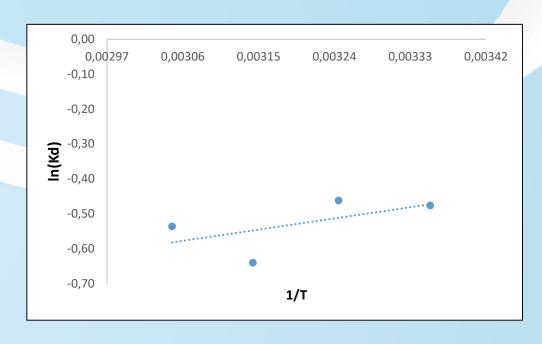
Processo spontaneo e favorevole

$$\Delta G > 0$$
 $\Delta S < 0$

Processo sfavorevole e non spontaneo

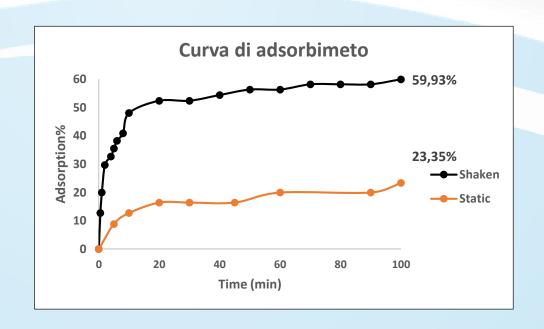
$$\Delta H < 0$$

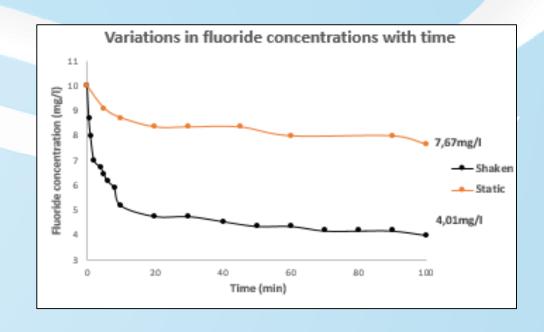

 \longrightarrow


Processo esotermico

$$\Delta H > 0$$

Processo endotermico


Modelli analitici: Parametri termodinamici



T(°C)	Kd	1/T	ln Kd	△G (kJ/mol)	△S (kJ/mol)	△H (kJ/mol)
25	0,6212	0,00335	-0,48	1,18		-13,85
35	0,63	0,00324	-0,46	1,18	2,96	
45	0,5271	0,00314	-0,64	1,69	2,30	
55	0,585	0,00305	-0,54	1,46		

Modelli analitici: Parametri termodinamici

Grazie al supporto del miscelatore orbitale, aumenta l'interazione tra adsorbato e adsorbente instaurando un miglior contatto, controllato sia dalla struttura del adsorbente che dalle proprietà chimiche, portando un notevole incremento dell'efficienza, dalle condizioni statiche a quelle di agitazione, di circa il 40%.

Conclusioni

- ➤ L'adsorbimento dei fluoruri con fango attivo modificato con lantanio, non risulta essere efficiente a basse concentrazioni di lantanio, quindi tale carbone a basso costo non risulta essere adatto allo scopo.
- ➤ L'adsorbimento dei fluoruri con fango attivo ha restituito una curva di adsorbimento stabile con un aumento di efficienza nel tempo, in particolare il valore massimo di efficienza di rimozione è stato circa del 60%.
- > Studiando l'effetto del pH si è visto che, il range ottimale di pH va da 3 a 8, con un efficienza massima pari al 65% per pH uguale a 3.
- ➤ Dai risultati ottenuti dall'effetto della temperatura si evince che, il processo di adsorbimento è conveniente a basse temperatura indicandoci che, è un processo esotermico in accordo anche con i parametri termodinamici.
- > Dallo studio dei modelli risulta che:
 - Il modello cinetico di pseudo secondo-ordine è quello che si adatta meglio ai dati sperimentali;
 - L'isoterma di adsorbimento risulta essere quella di Freundlich;
 - Il processo di adsorbimento risulta essere poco spontaneo, termodinamicamente favorevole ed esotermico.

