UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II

FACOLTA' DI INGEGNERIA

CORSO DI LAUREA IN INGEGNERIA PER L'AMBIENTE E IL TERRITORIO

TESI DI LAUREA

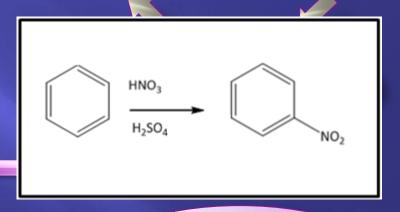
"ASPETTI CINETICI E DI SICUREZZA DI PROCESSI DI NITRAZIONI DI ESTERI AROMATICI"

Relatore: Ch.mo Prof. R. Andreozzi <u>Candidata:</u> Rossella Bove Matr.518/611

ANNO ACCADEMICO 2010-2011

Le reazioni di nitrazione-pericolosità

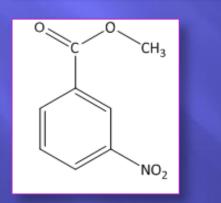
A livello industriale, la maggior parte delle reazioni di nitrazione coinvolge i composti aromatici. Tali reazioni sono uno dei più antichi ed importanti processi per la produzione di intermedi ma sono anche tra i più pericolosi


Secondo un'indagine le reazioni di nitrazione sono seconde solo alle polimerizzazioni per causa di **esplosioni**

Reazioni esotermiche

Insorgere di reazioni secondarie:

- □Polinitrazioni,
- ☐ Decomposizione dei prodotti nitrati e conseguente sviluppo di gas e pressurizazzione del reattore


Aumento di pressione/volume del sistema

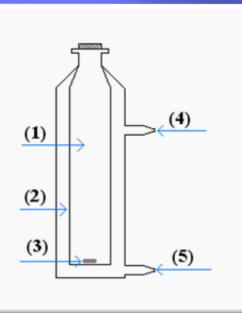
Scopo della tesi

Individuazione di tutti gli intermedi di reazione prodotti in quantità non trascurabili nel corso di processi di nitrazione e/o idrolisi

Individuazione di un network di reazioni semplice per descrivere gli step reattivi che potrebbero decorrere durante la sintesi industriale del 3-nitrobenzoato di metile a partire dal benzoato di metile in situazioni incidentali

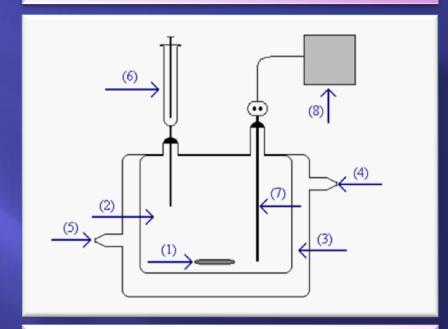
Importante intermedio reattivo nella sintesi di farmaci, coloranti e pesticidi

3-Nitrobenzoato di metile


Nitrazione del benzoato di metile

In letteratura non è possibile reperire le costanti cinetiche delle due reazioni.

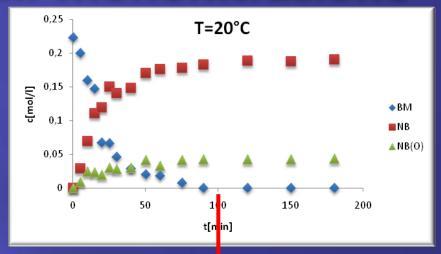
Al fine di stimare i parametri cinetici che regolano il processo sono state realizzate prove sperimentali a diverse temperature e diverse concentrazioni iniziali di substrato organico e a diversa composizione del substrato nitrante.

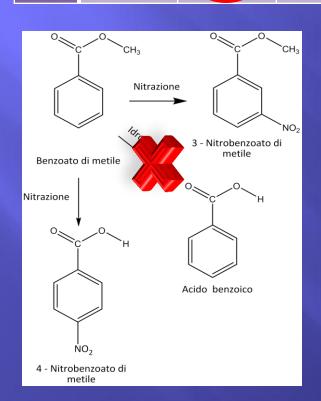

Procedure e apparecchiature sperimentali

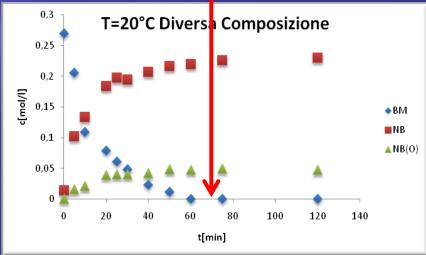
Prove in isotermo

(1) Reattore; (2) Camicia di raffreddamento; (3) Magnete per l'agitazione;
(4) Uscita acqua di raffreddamento; (5) Ingresso acqua di raffreddamento.

Prove in isoperibolico

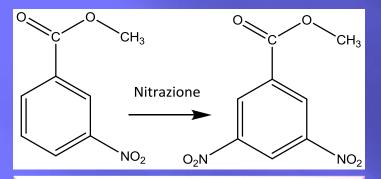


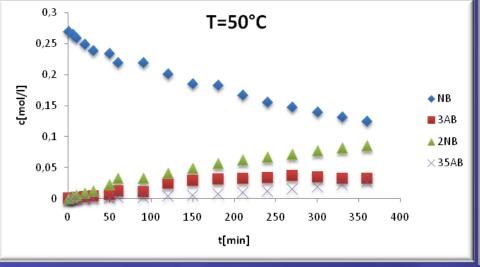

(1) Magnete per l'agitazione; (2) Reattore; (3) Camicia di raffreddamento; (4) Uscita acqua di raffreddamento; (5) Ingresso acqua di raffreddamento; (6) Sistema per il prelievo dei campioni; (7) Termocoppia; (8) Sistema di acquisizione dei dati di temperatura.

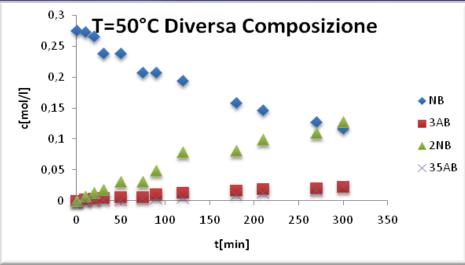

I campioni prelevati vengono sottoposti ad analisi mediante cromatografia liquida ad alta pressione (HPLC)

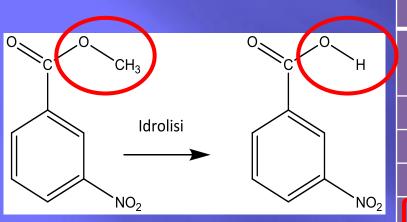
Risultati sperimentali-Mononitrazione

Nitrazione del Benzoato di metile (BM)				
Т	[BM] (mol/l)	[HNO ₃] (mol/l)	[H ₂ SO ₄] (mol/l)	[H ₂ O] (mol/l)
[°C]	(11101/1)	(11101/1)	(11101/1)	(11101/1)
10	0.22	4.52	9.14	16.59
15	0.22	4.52	9.14	16.59
20	0.22	4.52	9.14	16.59
20	0,27	5.06	8.72	16.0

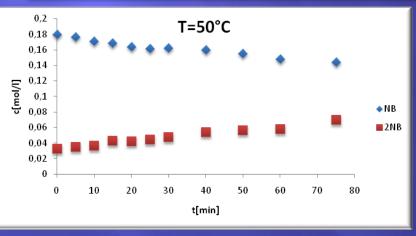



I risultati mostrano accanto alla formazione di NB quella del suo isomero, il 4 – nitrobenzoato di metile in concentrazioni trascurabili

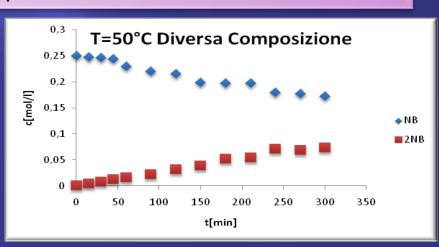

Risultati sperimentali- Dinitrazione


La reazione di nitrazione di NB si avvia intorno ai 50°C. Per inibire la reazione di idrolisi l'acqua nel sistema è stata diminuita.

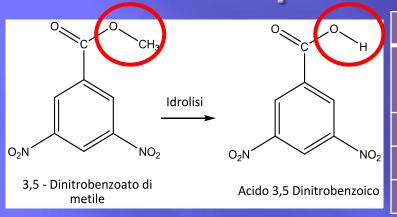
Nitrazione del m – Nitrobenzoato di metile (NB)				
T [°C]	[NB] (mol/l)	[HNO ₃] (mol/l)	[H ₂ SO ₄] (mol/l)	[H ₂ O] (mol/l)
50	0.27	6.00	12.2	5.50
50	0.27	6.31	12.7	3.35
65	0.29	6.00	12.2	5.50
70	0.27	6.00	12.2	5.50
70	0.48	6.8	11.7	5.54

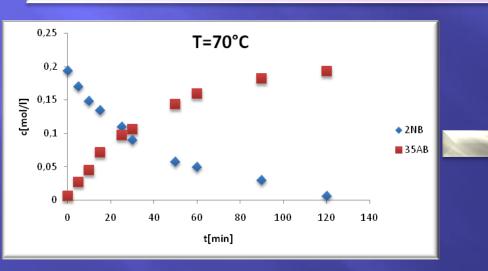


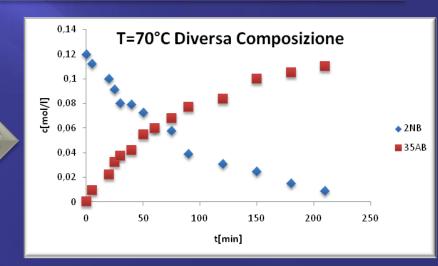
Risultati sperimentali- Idrolisi di NB

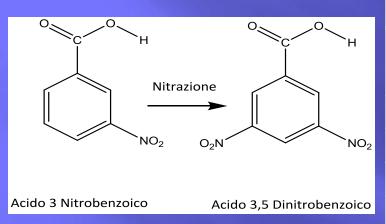


Idrolisi del 3 – Nitrobenzoato di metile (NB)				
Т	[NB]	[HNO ₃]	[H ₂ SO ₄]	[H ₂ O]
[°C]	(mol/l)	(mol/l)	(mol/l)	(mol/l)
40	0.20	4.48	9.05	16.5
50	0.18	4.48	9.05	16.5
70	0.20	4.48	9.05	16.5
50	0.25	5.30	10.6	8.80

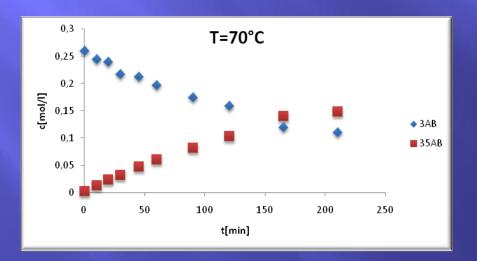

La reazione di idrolisi del prodotto di mononitrazione è lenta per temperature pari a 40°C e 50°C, mentre arriva a completamento per T=70°C

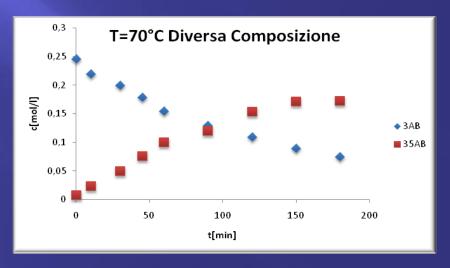



Risultati sperimentali- Idrolisi di 2NB

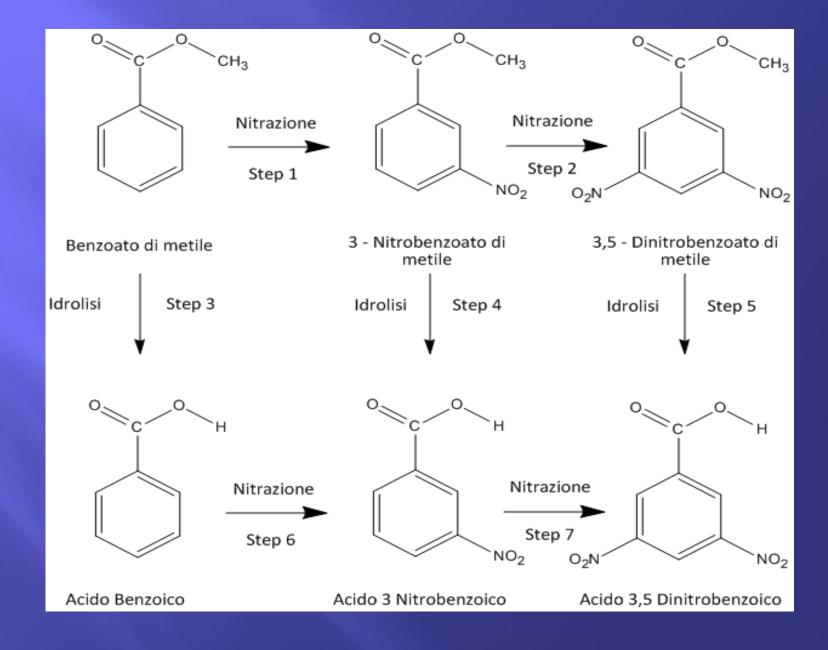

Idrolisi del 3,5 – Dinitrobenzoato di metile (2NB)				
т	[2NB]	HNO ₃	[H ₂ SO ₄]	[H ₂ O]
[°C]	(mol/l)	(mol/l)	(mol/l)	(mol/l)
60	0.22	4.70	9.50	16.7
70	0.19	4.63	9.50	16.7
70	0.12	5.50	11.1	10.1

La reazione ha luogo a temperature dell'ordine dei 60°C/70°C. La reattività viene inibita a causa della diminuzione dell'acqua e dell'aumento del rapporto tra le concentrazioni di acido nitrico e substrato.





Risultati sperimentali- Nitrazione 3-AB


Nitrazione dell'Acido 3 Nitrobenzoico (3AB)				
Т	[3AB]	[HNO ₃]	[H ₂ SO ₄]	[H ₂ O]
[°C]	(mol/l)	(mol/l)	(mol/l)	(mol/l)
60	0.26	6.02	12.2	5.60
70	0.26	6.02	12.2	5.60
75	0.25	6.02	12.2	5.60
70	0.25	4.50	12.7	3.42

Il prodotto di idrolisi nella miscela reagente può essere nitrato per formare 3,5-AB già prodotto della reazione di idrolisi del 2-NB.

Il network reattivo:

Conclusioni

L'analisi dei dati sperimentali emersi ha permesso la stesura del network reattivo completo del processo in esame

I risultati ottenuti hanno consentito di individuare l'evoluzione del sistema reagente nel tempo e raccogliere informazioni relative alla distribuzione dei prodotti e alle temperature di avvio delle reazioni

Sviluppi futuri

I risultati ottenuti verranno utilizzati per la costruzione di modelli, per l'individuazione di parametri cinetici e per simulare i profili di temperatura di nitrazione nei reattori nel caso in cui si perda il controllo.