UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

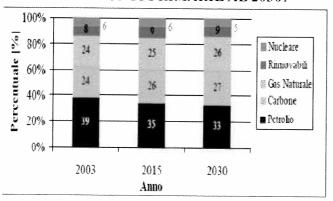
FACOLTÀ DI INGEGNERIA

Corso di Laurea in Ingegneria per l'Ambiente ed il Territorio

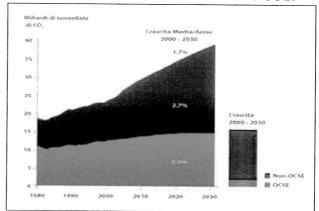
ELABORATO DI LAUREA

Recupero di energia durante la decontaminazione delle acque reflue: Simultanea ossidazione fotocatalitica di un substrato organico e produzione di energia elettrica

Relatori: Candidato:


Ch.mo Prof. Rossella Petrazzuoli

Roberto Andreozzi Matr. 518/409


ANNO ACCADEMICO 2009-2010

Fonti di Energia: scenari energetici al 2030

IMPIEGO FONTI PRIMARIE AL 2030:

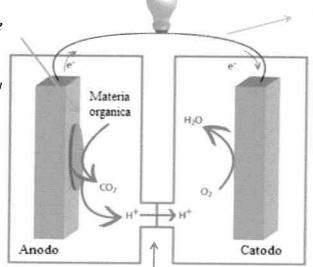
AUMENTO EMISSIONI DI CO2:

NON RINNOVABILI:

- ✓ PETROLIO
- ✓ GAS NATURALE
- ✓ CARBONE
- ✓ URANIO

RINNOVABILI:

- ✓ ENERGIA SOLARE
- ✓ ENERGIA EOLICA
- ✓ ENERGIA IDRICA
- ✓ ENERGIA GEOTERMICA
- ✓ ENERGIA DALLE BIOMASSE


<u>Produzione</u> "Biogas"

Celle a combustione microbiche:

Dispositivi che convertono energia chimica in energia elettrica durante la rimozione del materiale organico delle acque reflue civili

Depurazione acque reflue

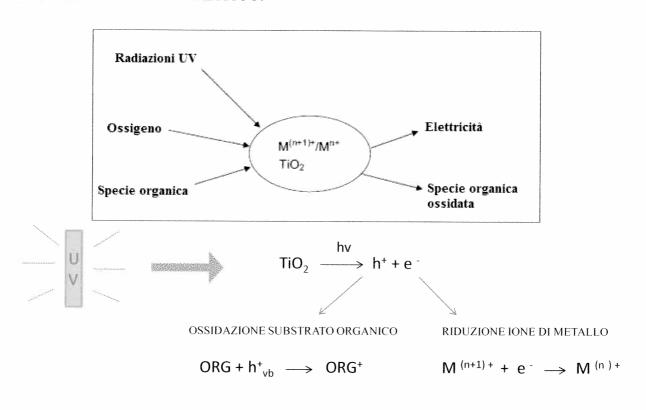
Azione metabolica dei microrganismi sulla materia organica , in seguito alla quale vengono liberati elettroni e protoni

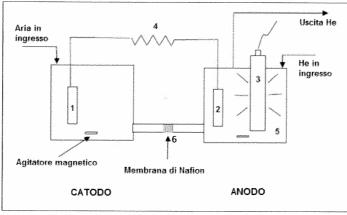
Produzione energia elettrica

Trasferimento di elettroni

Passaggio di protoni attraverso la membrana

Vantaggi:


- ✓ Utilizzo a temperatura ambiente
- ✓ No purificazione gas in uscita
- ✓ Utilizzo in luoghi privi di infrastrutture elettriche


- ✓ Vantaggio tecnologico
- √ Vantaggio economico
- ✓Inesauribilità materia prima

Cella fotochimica con catodo Cu²⁺ / Cu⁰

<u>SISTEMA NON-BIOLOGICO</u>, in cui viene sfruttata l'ossidazione di una specie organica per generare elettricità. Ciò è reso possibile dalla combinazione di una CELLA ELETTROCHIMICA con un REATTORE FOTOCATALITICO.

Parte Sperimentale

<u>CATODO</u>

 Coppia Cu²⁺ / Cu⁰
 Coppia O₂ / H₂O rivestito da platinum black

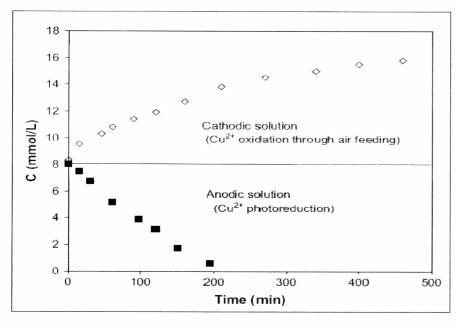
Collegamenti

- 4. Resistenza 4600 Ω
- 6. Membrana scambio cationico Nafion 117

- ANODO
- 2. Elettrodo di rame metallico di Superficie 40 cm²
- 3. Lampada UV alta pressione

I°(305)=5.70E-07 Es-I°(313)=9.83E-07 Es-

1°(313)=9.83E-07 Es-1 1°(366)=2.98E-07 Es-1


5. Soluzione solfato di rame (CuSO₄) Sospensione Biossido di titanio (TiO₂)

AGENTI SACRIFICALI

i. Acido Formico (FA) ii. Glicerolo (GLY)

iii. Glucosio (GLU)

Cella fotochimica con catodo Cu²⁺ / Cu⁰

<u>Variazione nel tempo della</u> <u>concentrazione degli ioni Cu²⁺</u> <u>nei due scompartimenti</u>

Dati:

- ✓ pH= 2.0
- ✓ $[Cu^{2+}] = 8.0 \text{ mmol/L}$
- ✓ $[TiO_2] = 0.8 gr/L$
- ✓ [FA] = 8 mmol/L
- \checkmark R =4600 Ω

Reazioni nella soluzione anodica

$$Cu^{2+} + e^{-} \longrightarrow Cu^{+} + e^{-} \stackrel{fast}{\longrightarrow} Cu^{0}$$

 $h^{+} + HCOOH \longrightarrow HCOO \bullet + H^{+} \stackrel{h^{+}/fast}{\longrightarrow} CO_{2} + 2H^{+}$

Cella fotochimica con catodo Cu²⁺ / Cu⁰

RISULTATI DELL' ESPERIMENTO

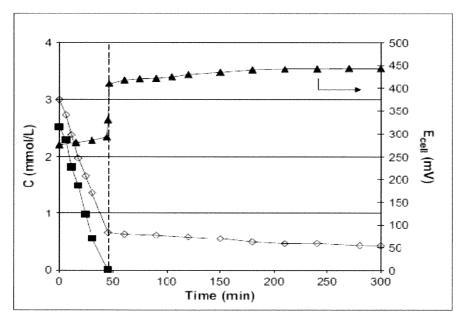
$$[Cu^{2+}]_{Anodo}$$
 = 1.0 mmol/L
 $[Cu^{2+}]_{Catodo}$ = 16.0 mmol/L

$$OCV = 31.2 \text{ mV}$$

 $E_{cell} = 20 \text{ mV}$

$$R_{\rm int} = R_{est} \left(\frac{OCV}{E_{cell}} - 1 \right) = 2576\Omega$$

$$P = E_{cell} x I = \frac{E_{cell}^{2}}{R_{est}} = 8.69x10^{-5} mW$$


$$P_{A} = \frac{P}{A} = \frac{E_{cell}^{2}}{R_{ext}A} = 2.17x10^{-2} \frac{mW}{m^{2}}$$

✓ Potenza Specifica minore di quella riportata per dispositivi di MFCs

Diversi sistemi chimici per il compartimento catodico

Cella fotochimica con catodo O₂/H₂0

- ✓ Scomparsa quasi totale degli ioni Cu²+ nella soluzione
- ✓ Aumento tensione di cella
- ✓ Rapida ossidazione di Acido Formico

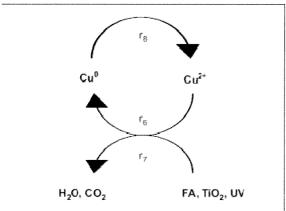
Legenda:

- Cu2+
- ◆ FA
- ▲ Ecell

Processo di carica nella cella

Dati:

- ✓ V_{SolAnodica}=0.1L
- \checkmark [Cu²⁺]₀ = 2.50 mmol/L
- ✓ [FA]₀ = 3.0 mmol/L
- ✓ p=1atm
- √pH=2.0
- \checkmark R_{est}=4600 Ω

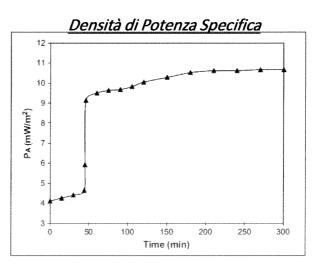

OCV=590 mV Ecell=275mV

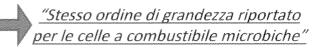
"LAMPADA ON"

- $\sqrt{[Cu^{2+}]_f}$ < 0.01 mg/L
- \checkmark [FA]_f = 50 mmol/L
- ✓ E_{cell} = 440 mV

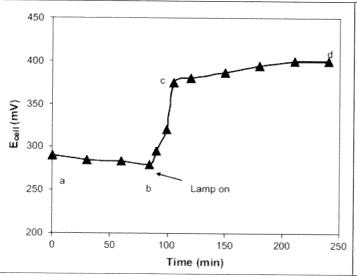
Cella fotochimica con catodo O₂/H₂0

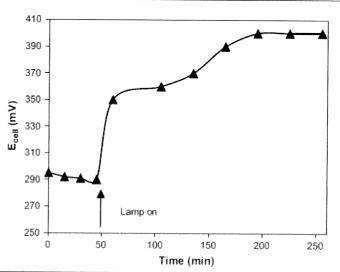
 $Cu^{2+} + e^{-} \longrightarrow Cu^{2+} e^{-} \longrightarrow Cu^{0}$ (r_6)


(Γ 7) h⁺ + HCOOH \longrightarrow HCOO $^{\bullet}$ + H⁺ $\xrightarrow{\text{h}^+/\text{fast}}$ CO₂ +2H⁺


 $Cu^0 \longrightarrow Cu^{2+} + 2e^{-}$ (**r**₈)

Velocità di rigenerazione degli ioni di rame: $v = \frac{E_{cell}}{V2N_A q_C R_{est}} = 4.96x10^{-9} mol L^{-1} s^{-1}$


Valore della corrente nel circuito


$$I = \frac{E_{cell}}{R_{est}} = \frac{OCV}{R_{int} + R_{est}}$$

Altri Agenti Sacrificali

GLICEROLO

GLUCOSIO

Tensione di Cella

Conclusioni

- ✓ Contemporanea rimozione di inquinante organico e generazione di elettricità;
- √ Capacità di riduzione degli ioni Cu²+ in presenza di TiO₂, radiazioni UV e di un agente organico;
- ✓ Guadagno in termini di Tensione di Cella e di Densità di Potenza Specifica con un sistema con catodo O₂/H₂0 ;
- ✓ Tensione di Cella legata alla concentrazione di materiale organico presente in soluzione;
- ✓ Capacità di una molecola di glucosio di ridurre più di uno ione di rame;
- ✓ Riduzione Resistenza Interna della cella per ottenere un incremento di corrente ;