Università degli Studi di Napoli "Federico II" Dipartimento di Ingegneria Civile, Edile ed Ambientale

Corso di Laurea Triennale in INGEGNERIA PER L'AMBIENTE E IL TERRITORIO

TESI DI LAUREA

«PERMEABILITA' E RESISTENZA DI CALCESTRUZZI AERATI E FIBRORINFORZATI»

RELATORE

Ch.mo Prof. Ing. Gianfranco Urciuoli

CANDIDATI

Sara Gargano Matr. N49/207 Alessio Saviano Matr. N49/406

CORRELATORE

Dott. Ing. Raffaele Papa

SINTESI DELL'ELABORATO DI TESI

- Calcestruzzo aerato
 - Impieghi
 - Preparazione dei campioni
- Prove di resistenza a trazione
- Prove di permeabilità
- Prove di resistenza a compressione
- Conclusioni

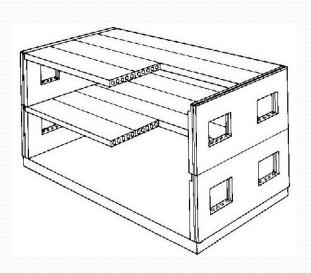
La fase sperimentale del presente lavoro di tesi è stata eseguita presso il laboratorio di Ingegneria Geotecnica del dipartimento di Ingegneria Civile, Edile e Ambientale dell'Università degli Studi di Napoli "Federico II".

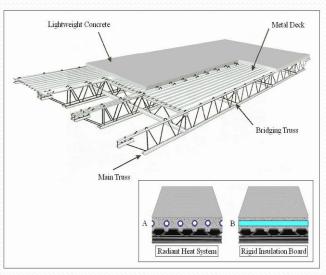
L'obiettivo di tale sperimentazione è di determinare le proprietà idrauliche e meccaniche di provini in calcestruzzo aerato allo scopo di studiarne i possibili campi di applicazione in ambito geotecnico.

Il **calcestruzzo aerato** è un conglomerato cementizio realizzato miscelando:

- ✓ Acqua
- ✓ Cemento
- ✓ Additivo schiumogeno

I meccanismi di produzione delle bolle d'aria possono essere di tipo:


Chimico Elementi prefabbricati


Meccanico Produzione in sito

Impieghi

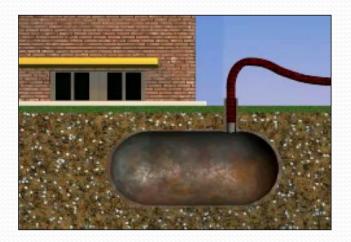
Impieghi strutturali

Tra i tanti possibili impieghi a livello strutturale, il calcestruzzo cellulare può essere usato per la realizzazione di pannelli leggeri isolanti.

Le celle d'aria all'interno della matrice di calcestruzzo cellulare a bassa densità forniscono isolamento termico e acustico e attenuazione delle scosse, proprietà che rendono questi materiali adatti per pareti, tetti, e altre strutture simili.

Impieghi geotecnici

- Riempimento cavità
- Riempimento a ridosso di scavi e per rilevati alleggeriti



Riempimento dello spazio anulare tra le condotte interrate

•Riempimenti di serbatoi sotterranei non più in uso e di strutture che devono essere abbandonate piuttosto che demolite.

- •Riempimenti alle spalle dei muri di sostegno
- •Sottofondo rilevati
- •Opere di sostegno
- •Sistemi di drenaggio

Preparazione dei provini

La boiacca cementizia è stata preparata utilizzando un cemento pozzolanico di tipo DURACEM 32,5 R.

Il valore ideale di densità della boiacca cementizia è di 1,6 kg/dm³; per ottenere tale valore è stato miscelato un quantitativo di acqua e polvere di cemento in rapporto pari a 0,5.

La schiuma si realizza insufflando aria in pressione all'interno di una miscela fluida composta da acqua e agente schiumogeno preformato. Tale procedura è possibile grazie all'impiego di un aeratore.

L'agente schiumogeno viene miscelato con l'acqua in una percentuale pari al 2% in volume. Insufflando aria ad una pressione di 2,6 bar si ottiene una schiuma con densità pari a 47,5 g/l.

Schiuma e boiacca cementizia sono state miscelate con l'ausilio di un trapano miscelatore ad elica. Il rapporto in volume schiuma/boiacca ideale è pari a 2,5

Sono state realizzate due miscele identiche con la sola differenza dell'aggiunta di fibre in polipropilene.

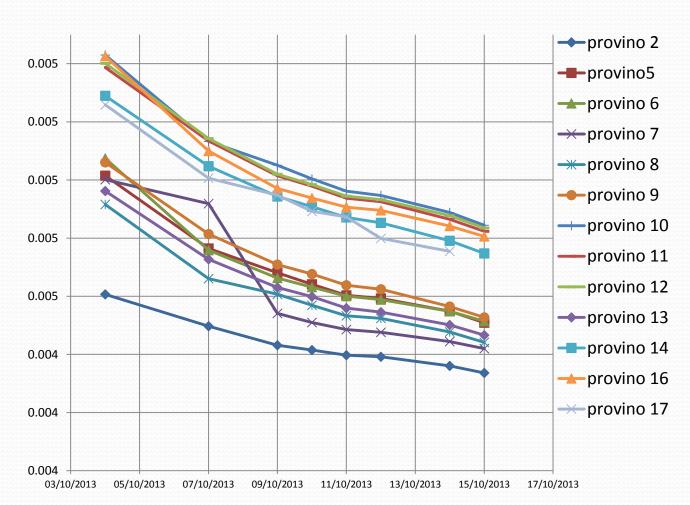
Le fibre sono state aggiunte con una quantità pari allo 0.2 % in peso.

Le fibre consentono al calcestruzzo di sviluppare, a parità di grado di maturazione, una maggiore resistenza a trazione rispetto a quella del corrispondente calcestruzzo privo di fibre.

Anche allo stato indurito, ovvero a maturazione avvenuta, la presenza delle fibre contribuisce a migliorare le proprietà del calcestruzzo; ne incrementano in particolare la tenacità, ovvero la resistenza residua post fessurazione, importante risorsa per contrastare la propagazione di fessurazioni soprattutto in regime dinamico.

Miscela	Pressione aria (bar)	Densità boiacca (kg/dm³)	Densità schiuma (kg/dm³)	Densità miscela (kg/dm³)
A (senza fibre)	2.6	1.6	0.0475	0.572
B (con fibre)	2.6	1.6	0.0487	0.546

Per realizzare i provini le miscele sono state colate in fustelle ricavate da tubi in PVC con diametro ϕ di 100 mm ed altezza h pari a 280 mm.



Sono stati realizzati 18 provini (9 con le fibre e 9 senza).

Essi sono stati rimossi dalle fustelle dopo 7 giorni.

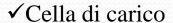
Si riporta un grafico dell'andamento della densità dei provini non sottoposti a prove nel tempo.

Resistenza a compressione

Per eseguire la prova di resistenza a compressione è stata utilizzata una cella di compressione triassiale.

Essa consente di:

- ✓ Misurare i volumi di acqua espulsi durante la prova
- ✓ Applicare una tensione di confinamento
- ✓ Consolidare isotropicamente i provini


In seguito a misurazioni effettuate a intervalli di tempo regolari è possibile rappresentare:

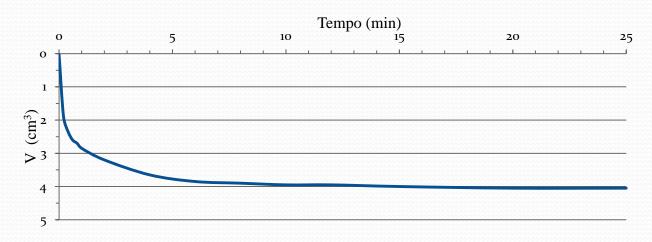
- ✓ Curva caratteristica di resistenza tensione deformazione
- ✓Diagramma deformazioni assiali deformazioni volumetriche

Per ottenere la pressurizzazione dell'acqua necessaria al corretto svolgimento delle prove, si ricorre al sistema di pressurizzazione

aria-acqua con membrana di interfaccia.

La misura dei carichi applicati, dei cedimenti assiali e dei volumi di acqua espulsi è stata effettuata utilizzando rispettivamente:

- ✓ Micrometro
- ✓ Buretta graduata

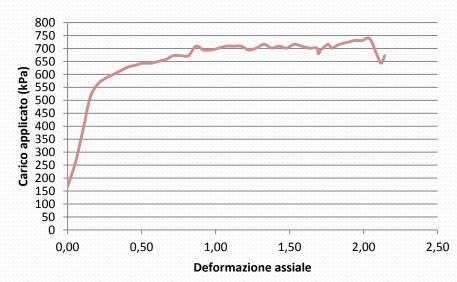

Esecuzione della prova

- ✓ Saturazione del provino;
- ✓ Consolidazione: espulsione del fluido di porosità a seguito di un aumento della pressione di cella (σ_c).

La differenza tra la pressione di cella e la back pressure fornisce la tensione di confinamento:

$$p' = \sigma_c - bp$$

Consolidazione Provino 1 (p'=50 kPa)



✓ Avviamento del pistone: terminata la fase di consolidazione si avvia il pistone della pressa a una velocità di 0,02 mm/min

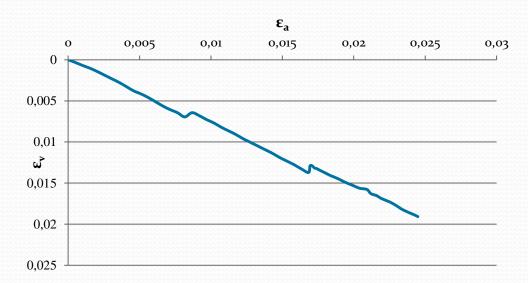
Rappresentazione dei risultati ottenuti

PROVINO 1 (SENZA FIBRE)

Tensione - Deformazione

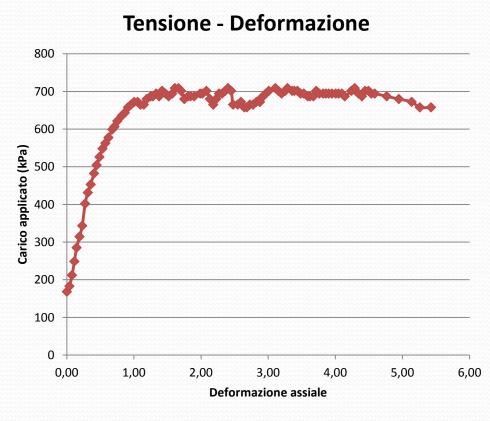
Prova eseguita 14 giorni dopo la realizzazione della miscela

$$\gamma = 4.894 \text{ kN/m}^3$$


Tensione di confinamento:

$$p' = \sigma_c - u = 49,4 \text{ kPa}$$

Resistenza a compressione:


$$q \approx 694,39 \text{ kPa}$$

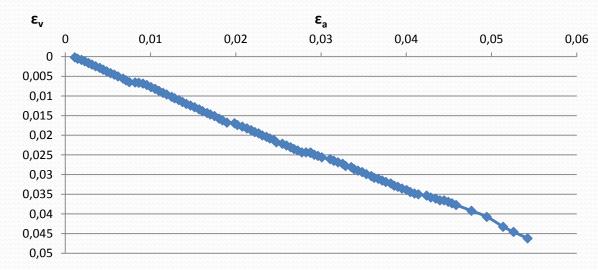
Deformazioni ε_a - ε_v

Rappresentazione dei risultati ottenuti

PROVINO 3 (CON FIBRE)

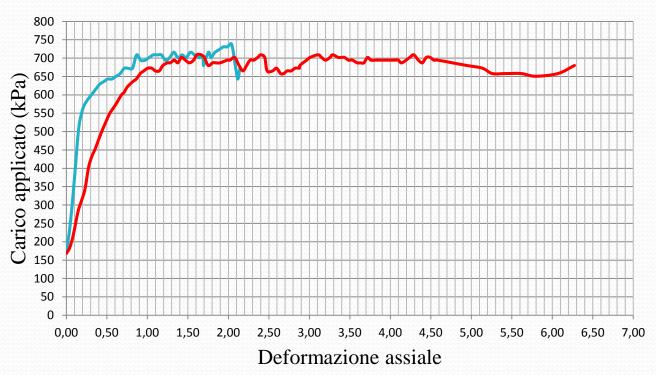
Prova eseguita 19 giorni dopo la realizzazione della miscela

$$\gamma = 4,588 \text{ kN/m}^3$$


Tensione di confinamento:

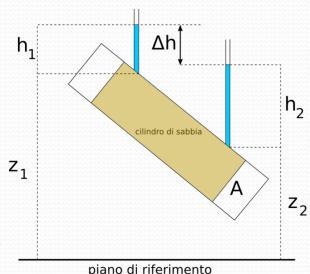
$$p' = \sigma_c - u = 53,3 \text{ kPa}$$

Resistenza a compressione:

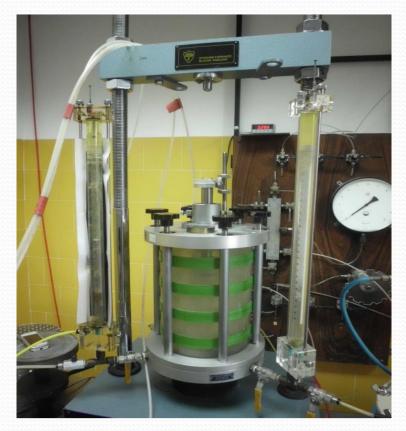

 $q \approx 700 \text{ kPa}$

Deformazioni ε_a - ε_v

Confronto


Il provino dotato di fibre mostra una maggiore duttilità e una rigidezza iniziale minore rispetto a quello senza fibre.

Prova di permeabilità


- Determinazione della permeabilità dei calcestruzzi aerati al fine di valutarne il possibile impiego in:
- ✓ Sistemi di drenaggio profondi
- ✓ Riempimento di scavi interrati
- ✓ Sistemi di drenaggio alle spalle dei muri di sostegno
- ✓ Barriera capillare per i rilevati
- Determinazione sperimentale della permeabilità del mezzo poroso tramite la legge di Darcy:

$$v = k * j$$

- ✓ V : velocità di filtrazione
- ✓ j : gradiente idraulico
- √ k : coefficiente di permeabilità

• Misura della permeabilità tramite cella di compressione triassiale

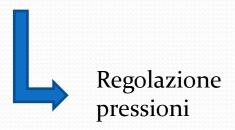
Vantaggi:

- ✓ saturazione del provino mediante back pressure (bp);
- ✓ controllo delle condizioni al contorno;
- ✓ garanzia sulla condizione di flusso monodimensionale.

Strumentazione

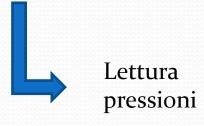
• Membrana e tendi-membrana a suzione

Consente di isolare idraulicamente il provino



Cilindro in perspex

Consente di applicare una tensione isotropa al provino



• Sistema di pressurizzazione aria – acqua con membrana

Trasduttore

• Burette graduate

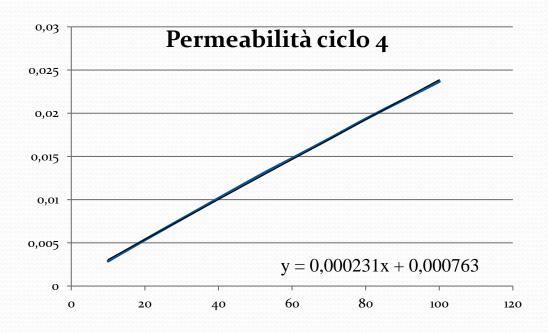
Preparazione ed esecuzione prova

- Installazione del provino
- Installazione e riempimento del cilindro di perspex
- Regolazione delle pressioni
- Saturazione del provino
- Misura dei volumi di acqua in ingresso ed in uscita dal provino

Saturazione del provino

✓ Provino sottovuoto

✓ Cicli di filtrazione

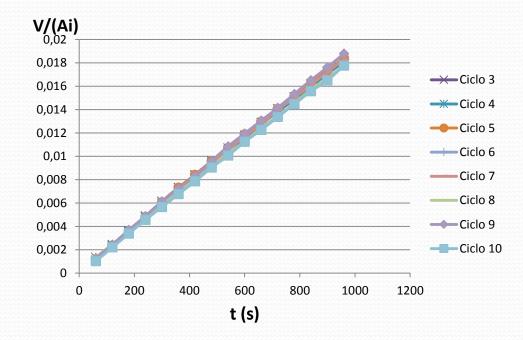

- ✓ Applicazione di una contropressione per circa 24 ore.
- ✓ Verifica di saturazione con il B-test :

$$\Delta u = B * [\Delta \sigma_c + A * (\Delta \sigma_a - \Delta \sigma_c)]$$

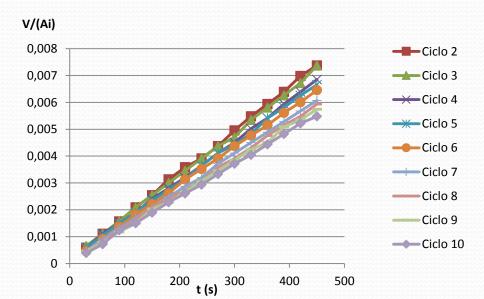
Analisi dei dati

• Definizione dei cicli di permeabilità

Ciclo 4						
Pcella(Kpa)	Pin(Kpa)	Pout(Kpa)	ΔH(Kpa)	ΔH(cm)	i(cm/cm)	
308	277.9	259.1	18.4	184.4	9.31	
t(s)	Vin(cm3)	Vout(cm3)	ΔVm (cm3)	ΣΔV(cm3)	v*A*t/(A*i) (cm)	k(cm/s)
0	3	23				
10	4.8	20.8	2	2	0.002896556	2.31E-04
20	6.5	19.1	1.7	3.7	0.005358628	
30	8.2	17.4	1.7	5.4	0.008361445	
40	9.8	15.8	1.6	7	0.010838910	
50	11.5	14.2	1.65	8.65	0.012527603	
60	13.1	12.7	1.55	10.2	0.014772434	
70	14.6	11.1	1.55	11.75	0.017017264	
80	16.2	9.5	1.6	13.35	0.019334509	
90	17.7	8	1.5	14.85	0.021506926	
100	19.2	6.5	1.5	16.35	0.023679342	



Rappresentazione dei risultati ottenuti


· Grafico relativo alla permeabilità dei provini in calcestruzzo aerato

kmedio(cm/s)

1.98E-05

kmedio (cm/s 1.47E-05

Considerazioni conclusive

• Tabella riepilogativa dei risultati ottenuti dalle prove di permeabilità

	PROVINO	k _{medio} (m/s)	Υ(kN/m³)
Senza fibre	1	1.98 x 10 ⁻⁷	5,252
	2	1.50 x 10 ⁻⁷	5,133
fibre	3	1,47 x 10 ⁻⁷	4,982
	4	2,11 x 10 ⁻⁶	4,750

- ✓ La sperimentazione è stata eseguita a diversi giorni di maturazione
- ✓ I valori del provino 4 particolarmente elevati sono probabilmente dovuti ad una migliore stagionatura che ha evitato durante la preparazione del campione la levigazione della base a seguito del taglio.

Prove di resistenza a trazione

Per eseguire le prove di rottura a trazione è stata utilizzata una pressa in grado di applicare carichi fino a 100 KN.

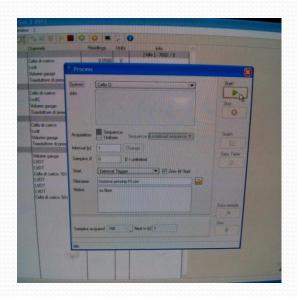
Si è imposto un moto del pistone dall'alto verso il basso a velocità di 0,0066 mm/min

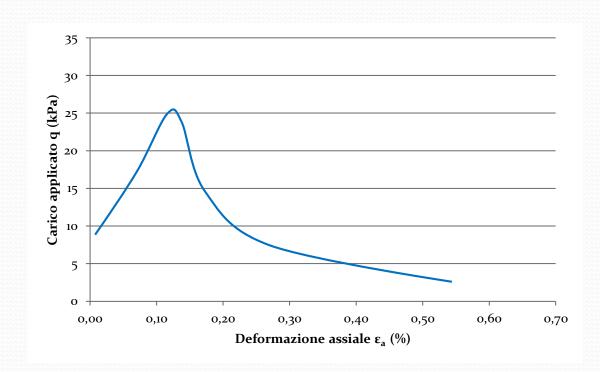
Strumentazione

• Resina e indurente

Consente l'incollaggio del provino alle basi

• Centralina di lettura automatica


Consente di leggere in automatico le deformazioni del provino e il carico applicato


Preparazione ed esecuzione prova

- Taratura micrometri e centralina di lettura
- Preparazione resina
- Installazione provino
- Regolazione pressa
- Inizio prova

CONSIDERAZIONI CONCLUSIVE

- ✓ La resistenza a trazione determinata su provini non rinforzati era di 25 KPa.
- ✓ Purtroppo a causa della bassa qualità della resina venduto il provino si è staccato dalle piastre intorno ai 20 KPa senza però mostrare alcuna lesione

Conclusioni

➤ Alla luce dei risultati ottenuti dopo 10 giorni di maturazione si puo' affermare che i valori di permeabilità e resistenza a compressione sono già confrontabili con quelli di calcestruzzi aerati, aventi la stessa densità, già attualmente utilizzati nell'ambito geotecnico [1 E-07 – 1 E-08] e [280 – 550 Kpa].

La differenza nella prova a compressione tra le 2 miscele, mostra un ottimo aumento di duttilità ed una diminuzione di irrigidimento da parte dei provini con fibre cosa che rende il materiale particolarmente idoneo all'uso geotecnico in cui è richiesto un aumento della capacità di deformarsi sotto carico.

➤Purtroppo non è stato possibile verificare un effettivo incremento della resistenza a trazione dovuto all'aggiunta di fibre data la scarsa qualità della resina, ma poiché a 20 KPa il materiale non ha mostrato alcuna fessura ci si aspetta che esso superi il limite di 30 KPa raggiunto nelle sperimentazioni precedenti.

GRAZIE PER L'ATTENZIONE