

Reduction of Dioxin Emissions from Thermal Treatment Plants

J. Vehlow

INSTITUTE FOR TECHNICAL CHEMISTRY

congeners:

chlorinated brominated	210 210

polyhalogenated dibenzo-p-dioxins und -furans

'since this compound caused heavy chloracne it did not invite to further investigations' (Stockmann/Sandermann)

1957: birth of halogenated dioxins

birth of a problem

1976 Seveso accident (10. July)

1977 detection of dioxins in fly ashes from Dutch waste incinerators

PCDD/F in a waste incinerator (early 1980th, in TE)

J. Vehlow (2011)

source: Vogg/Stieglitz 1984

formation of PCDD and PCDF in fly ashes

de-novo synthesis

(Vogg / Stieglitz 1985, Hagenmaier 1986)

ingredients:

- PICs (e.g. soot)
- halogenides (Cl⁻)
- catalysts (Cu)

conditions:

- oxidising atmosphere
- T > 200 °C (300-350 °C)

main PCDD/F formation mechanism

options for reducing dioxin emissions

suppression of generation

(head-end techniques)

and (/ or)

efficient abatement technologies

(secondary measures)

head-end techniques

- complete burnout
- limited dust release
- low oxygen surplus in the flue gas
- reduced CI/S ratio
- stationary combustion
- clean boiler
 - limited dust deposits
 - limited residence time of dust deposits
- filter temperature < 200 °C

source: Hunsinger 1994

build-up of organic micropollutants with temperature

source: Hunsinger et al. 2000

formation of PCDD/F inside the furnace

source: Hunsinger et al. 2000

PCDD/F mass flow in TAMARA furnace

fast reaction:

- 1. PCDF, PIC in raw gas
- 2. PIC deposition

slow reaction / memory effect:

de novo synthesis

source: Hunsinger et al. 2002

stationary combustion

transient conditions - start-up

source: Vehlow et al. 1996

influence of PVC on PCDD/F raw gas level in TAMARA

Griffin hypothesis:

$Cl_2 + SO_2 + H_2O \Rightarrow SO_3 + 2 HCI$

SO₂ specific raw gas sampling (full scale)

source: Hunsinger et al. 2004

influence of CI/S ratio in the flue gas (full scale)

PCDD/F raw gas concentration (TAMARA)

scheme of a S recycle process

abatement technologies - flue gas

- carbon adsorption (fixed or moving bed, scrubber)
- PAC injection + dust removal
- oxidation catalyst
- chemical oxidation in the flue gas
- combined filtration and catalytic destruction
- absorption by polymers

Combining the Principles of Surface Filtration and Catalysis

Gore REMEDIA Process

PCDD/F in pure plastic

PCDD/F in ADIOX®

adsorption-desorption equilibrium: "memory effect"

absorption in plastic and adsorption at carbon particles: "dioxin is fixed"

ADIOX® PCDD/F abatement system

ADIOX® application

PCDD/F in bottom ash between 1985 and 2005

abatement technologies - residues

- vitrification
- Hagenmaier drum
- 3R Process

scheme of the 3R Process

PCDD/F flow during 3R pellet recycling (1 Mg MSW)

PCDD/F in a state-of-the-art waste incinerator

conclusions

- the formation of PCDD/F can be minimized by optimized combustion control
- the boiler cleaning should be improved
- the temperature in the dedusting unit should be kept below 200 °C
- efficient secondary abatement measures have been developed
- the method of choice is depending on the gas cleaning strategy and the economics

65 million years ago

source: Spektrum der Wissenschaft 7/2002